【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若, 是直線與軸的交點(diǎn), 是圓上一動(dòng)點(diǎn),求的最大值;
(Ⅱ)若直線被圓截得的弦長(zhǎng)等于圓的半徑倍,求的值.
【答案】(Ⅰ);(Ⅱ)或.
【解析】試題分析:(Ⅰ)首先,根據(jù)所給a的值,將圓的極坐標(biāo)方程化為普通方程,將直線的參數(shù)方程化為直角坐標(biāo)方程,然后,根據(jù)圓的性質(zhì),將所求的最值轉(zhuǎn)化為到圓心的距離;(Ⅱ)首先,得到原點(diǎn)普通方程,然后,結(jié)合圓的弦長(zhǎng)公式,建立關(guān)系式求解a的值即可.
試題解析:
(Ⅰ)當(dāng)時(shí),圓的極坐標(biāo)方程為,可化為,
化為直角坐標(biāo)方程為,即.
直線的普通方程為,與軸的交點(diǎn)的坐標(biāo)為,
∵圓心與點(diǎn)的距離為,
∴的最大值為.
(Ⅱ)由,可化為,
∴圓的普通方程為.
∵直線被圓截得的弦長(zhǎng)等于圓的半徑的倍,
∴由垂徑定理及勾股定理得:圓心到直線的距離為圓半徑的一半,
∴,解得或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
設(shè)函數(shù)有兩個(gè)極值點(diǎn),且
(I)求的取值范圍,并討論的單調(diào)性;
(II)證明: w.w.w..c.o.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f2(x)﹣axf(x)恰有6個(gè)零點(diǎn),則a的取值范圍是( )
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】多面體, , , , , , , 在平面上的射影是線段的中點(diǎn).
(1)求證:平面平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義在R上的函數(shù)對(duì)任意的 ,都有 成立,且當(dāng) 時(shí), .
(1)求的值;
(2)求證: 是R上的增函數(shù);
(3)若 ,不等式 對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+b滿足f(1)=0,且在x=2時(shí)函數(shù)取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,t](t>0)上的最大值g(t)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對(duì)任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示:
(1)試計(jì)算該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(jià)(元)與銷量(萬(wàn)件)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對(duì)應(yīng)數(shù)據(jù):
售價(jià)(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬(wàn)份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
據(jù)此計(jì)算出的回歸方程為,求的值;
(3)若從上述五組銷量中隨機(jī)抽取兩組,求兩組銷量中恰有一組超過(guò)6萬(wàn)件的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com