【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

【答案】(1)y2=8x.(2)λ=0,或λ=2.

【解析】試題分析:第一問求拋物線的焦點弦長問題可直接利用焦半徑公式,先寫出直線的方程,再與拋物線的方程聯(lián)立方程組,設而不求,利用根與系數(shù)關系得出,然后利用焦半徑公式得出焦點弦長公式,求出弦長,第二問根據(jù)聯(lián)立方程組解出的A、B兩點坐標,和向量的坐標關系表示出點C的坐標,由于點C在拋物線上滿足拋物線方程,求出參數(shù)值.

試題解析:

(1)直線AB的方程是y=2(x-2),與y2=8x聯(lián)立,消去yx2-5x4=0,

由根與系數(shù)的關系得x1x25.由拋物線定義得|AB|=x1x2p=9,

(2)由x2-5x+4=0,得x1=1,x2=4,從而A(1,-2),B(4,4).

=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),

y=8x3,即[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,

解得λ=0或λ=2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 過圓上任意一點軸引垂線垂足為(點、可重合),點的中點.

(1)求的軌跡方程;

(2)若點的軌跡方程為曲線,不過原點的直線與曲線交于、兩點,滿足直線, , 的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對數(shù)的底數(shù)).且曲線y=f(x)在點(1,f(1))處的切線平行于x軸.

(1)求a的值;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求過點的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且, , .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學生稱為“書蟲”,低于60 min的學生稱為“懶蟲”,

(1)求x的值并估計全校3 000名學生中“書蟲”大概有多少名學生?(將頻率視為概率)

(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓 的左焦點是,離心率為,且上任意一點的最短距離為.

(1)求的方程;

(2)過點的直線(不過原點)與交于兩點、, 為線段的中點.

(i)證明:直線的斜率乘積為定值;

(ii)求面積的最大值及此時的斜率.

查看答案和解析>>

同步練習冊答案