【題目】如圖在多面體中,四邊形是邊長(zhǎng)為的正方形, 為等腰梯形,且, , , .
(1)證明:平面平面;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2)二面角的余弦值為.
【解析】試題分析:(1)所求證的線面垂直可以歸結(jié)為平面,可由和得證.(2)建立如圖所示的空間直角坐標(biāo)系,計(jì)算兩個(gè)平面的法向量后再計(jì)算出它們的夾角的余弦為,從而二面角的平面角的余弦值為.
解析:(1)(1)∵四邊形是正方形,∴,∵, ,∴平面,∵平面,∴平面平面.
(2)過(guò)點(diǎn)作于,由(1)知平面,∵四邊形是等腰梯形, , , ,∴, .
作,以為坐標(biāo)原點(diǎn),分別以射線、、為、、軸建立如圖所示的空間直角坐標(biāo)系,
∴, , , , .∴, .
設(shè)平面的一個(gè)法向量,則,即,令,
∴,又∵, ,同理得平面的一個(gè)法向量,∴ ,故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線()上一動(dòng)點(diǎn), 、是圓: 的兩條切線, 、為切點(diǎn), 為圓心,若四邊形面積的最小值是,則的值是( )
A. B. C. D.
【答案】D
【解析】∵圓的方程為: ,
∴圓心C(0,1),半徑r=1.
根據(jù)題意,若四邊形面積最小,當(dāng)圓心與點(diǎn)P的距離最小時(shí),即距離為圓心到直線l的距離最小時(shí),切線長(zhǎng)PA,PB最小。切線長(zhǎng)為4,
∴,
∴圓心到直線l的距離為.
∵直線(),
∴,解得,由
所求直線的斜率為
故選D.
【題型】單選題
【結(jié)束】
19
【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,經(jīng)過(guò)且斜率為的直線與拋物線在軸上方的部分相交于點(diǎn), ,垂足為,則的面積是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018江西南康中學(xué)、于都中學(xué)上學(xué)期第四次聯(lián)考】橢圓上動(dòng)點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4,且到右焦點(diǎn)距離的最大值為.
(I)求橢圓的方程;
(II)設(shè)點(diǎn)為橢圓的上頂點(diǎn),若直線與橢圓交于兩點(diǎn)(不是上下頂點(diǎn)).試問(wèn):直線是否經(jīng)過(guò)某一定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由;
(III)在(II)的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形與梯形全等, , , , , , 為中點(diǎn).
(Ⅰ)證明: 平面
(Ⅱ)點(diǎn)在線段上(端點(diǎn)除外),且與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC為等腰直角三角形, , , 分別是邊和的中點(diǎn),現(xiàn)將沿折起,使平面, 分別是邊和的中點(diǎn),平面與, 分別交于, 兩點(diǎn).
(1)求證: ;
(2)求二面角的余弦值;
(3)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(x)=xlnx,g(x)=ax3-.
(Ⅰ)求函數(shù)(x)的單調(diào)遞增區(qū)間和最小值;
(Ⅱ)若函數(shù)y= (x)與函數(shù)y =g(x)的圖象在交點(diǎn)處存在公共切線,求實(shí)數(shù)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) 為橢圓 上任一點(diǎn),, 為橢圓的焦點(diǎn),,離心率為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線 經(jīng)過(guò)點(diǎn) ,且與橢圓交于 , 兩點(diǎn),若直線 ,, 的斜率依次成等比數(shù)列,求直線 的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com