【題目】為備戰(zhàn)某次運動會,某市體育局組建了一個由4個男運動員和2個女運動員組成的6人代表隊并進行備戰(zhàn)訓練.
(1)經(jīng)過備戰(zhàn)訓練,從6人中隨機選出2人進行成果檢驗,求選出的2人中至少有1個女運動員的概率;
(2)檢驗結(jié)束后,甲、乙兩名運動員的成績?nèi)缦拢?
甲:70,68,74,71,72
乙:70,69,70,74,72
根據(jù)兩組數(shù)據(jù)完成圖示的莖葉圖,并通過計算說明哪位運動員的成績更穩(wěn)定.
【答案】
(1)解:從6人中隨機選出2人,選出的2人中至少有1個女運動員的概率為
P=1﹣ =1﹣ = ;
(2)解:根據(jù)題目中的數(shù)據(jù),畫出莖葉圖如圖所示;
設甲運動員的平均成績?yōu)? ,方差為 ,
乙運動員的平均成績?yōu)? ,方差為 ,
可得 = ×(68+70+71+72+74)=71,
= ×(69+70+70+72+74)=71,
= ×[(68﹣71)2+(70﹣71)2+(71﹣71)2+(72﹣71)2+(74﹣71)2]=4,
= ×[(69﹣71)2+(70﹣71)2+(70﹣71)2+(72﹣71)2+(74﹣71)2]=3.2.
∵ = , > ,故乙運動員的成績更穩(wěn)定.
【解析】(1)求出從6人中隨機選出2人,選出的2人中至少有1個女運動員的基本事件數(shù),計算對應的概率值;(2)根據(jù)題目中的數(shù)據(jù),畫出莖葉圖,計算甲、乙運動員的平均成績與方差,比較大小即可得出結(jié)論.
【考點精析】利用莖葉圖和極差、方差與標準差對題目進行判斷即可得到答案,需要熟知莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少;標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)證明:a,b,c成等比數(shù)列;
(Ⅱ)若角B的平分線BD交AC于點D,且b=6,S△BAD=2S△BCD , 求BD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA= ,c=3b,且△ABC面積S△ABC= .
(1)求邊b.c;
(2)求邊a并判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:x2+(y﹣4)2=4,點P是直線l:x﹣2y=0上的一動點,過點P作圓M的切線PA,PB,切點為A,B.
(1)當切線PA的長度為 時,求點P的坐標;
(2)若△PAM的外接圓為圓N,試問:當P在直線l上運動時,圓N是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內(nèi)一點,且, (為坐標原點).
(1)求橢圓的方程;
(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢測某輪胎公司生產(chǎn)的輪胎的寬度,需要抽檢一批輪胎(共10個輪胎),已知這批輪胎寬度(單位: )的折線圖如下圖所示:
(1)求這批輪胎寬度的平均值;
(2)現(xiàn)將這批輪胎送去質(zhì)檢部進行抽檢,抽檢方案是:從這批輪胎中任取5個作檢驗,這5個輪胎的寬度都在內(nèi),則稱這批輪胎合格,如果抽檢不合格,就要重新再抽檢一次,若還是不合格,這批輪胎就認定不合格.
求這批輪胎第一次抽檢就合格的概率;
記為這批輪胎的抽檢次數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有8名奧運會志愿者,其中志愿者A1 , A2 , A3通曉日語,B1 , B2 , B3通曉俄語,C1 , C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求A1被選中的概率;
(2)求B1和C1不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC 中,角A,B,C所對的邊分別為a,b,c,且asin Acos C+csin AcosA= c
(1)若c=1,sin C= ,求△ABC的面積S
(2)若D 是AC的中點且cosB= ,BD= ,求△ABC的最短邊的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com