【題目】如圖,以棱長(zhǎng)為1的正方體的具有公共頂點(diǎn)的三條棱所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系Oxyz,點(diǎn)P在對(duì)角線AB上運(yùn)動(dòng),點(diǎn)Q在棱CD上運(yùn)動(dòng).
(1)當(dāng)P是AB的中點(diǎn),且2|CQ|=|QD|時(shí),求|PQ|的值;
(2)當(dāng)Q是棱CD的中點(diǎn)時(shí),試求|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
【答案】(1) (2) 點(diǎn)P的坐標(biāo)為(), 最小值為.
【解析】
(1)根據(jù)正方體的性質(zhì)可得的坐標(biāo),由兩點(diǎn)間的距離公式計(jì)算可得結(jié)果;(2)根據(jù)題意,設(shè)點(diǎn)的橫坐標(biāo)為,得=.由,可得==,可得的坐標(biāo)為,進(jìn)而可以用表示的長(zhǎng),結(jié)合二次函數(shù)的性質(zhì)分析可得結(jié)果.
(1)因?yàn)檎襟w的棱長(zhǎng)為1,P是AB的中點(diǎn),所以P().
因?yàn)?|CQ|=|QD|,所以|CQ|=,所以Q(0,1,).
由兩點(diǎn)間的距離公式得:
|PQ|==.
(2)如圖,過(guò)點(diǎn)P作PE⊥OA于點(diǎn)E,則PE垂直于坐標(biāo)平面xOy.
設(shè)點(diǎn)P的橫坐標(biāo)為x,則由正方體的性質(zhì)可得點(diǎn)P的縱坐標(biāo)也為x.
由正方體的棱長(zhǎng)為1,得|AE|= (1-x).
因?yàn)?/span>,
所以|PE|==1-x,
所以P(x,x,1-x).
又因?yàn)镼(0,1,),
所以|PQ|=
所以當(dāng)x=時(shí),|PQ|min=,即當(dāng)點(diǎn)P的坐標(biāo)為(),
即P為AB的中點(diǎn)時(shí),|PQ|的值最小,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷(xiāo)售,為了更好地銷(xiāo)售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在,,,,,單位:克中,其頻率分布直方圖如圖所示.
Ⅰ按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;
Ⅱ以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹(shù)上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:
A.所有蜜柚均以40元千克收購(gòu);
B.低于2250克的蜜柚以60元個(gè)收購(gòu),高于或等于2250克的以80元個(gè)收購(gòu).
請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
求的單調(diào)區(qū)間;
當(dāng)時(shí),若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,⊥底面,底面為等邊三角形,,, ,分別為, 的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成二面角的余弦值;
(3)設(shè)平面與平面的交線為求證:與平面不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).① 若,則的極小值為___; ② 若存在使得方程無(wú)實(shí)根,則的取值范圍是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于、兩點(diǎn),若存在點(diǎn)使得為等邊三角形,則( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com