【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷(xiāo)售,為了更好地銷(xiāo)售,現(xiàn)從該村的蜜柚樹(shù)上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在,,,單位:克中,其頻率分布直方圖如圖所示.

按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹(shù)上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:

A.所有蜜柚均以40元千克收購(gòu);

B.低于2250克的蜜柚以60元個(gè)收購(gòu),高于或等于2250克的以80元個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

【答案】(Ⅰ) (Ⅱ)見(jiàn)解析

【解析】

由題得蜜柚質(zhì)量在的比例為2:3,應(yīng)分別在質(zhì)量為的蜜柚中各抽取2個(gè)和3個(gè)記抽取質(zhì)量在的蜜柚為,,質(zhì)量在的蜜柚為,,則從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),利用列舉法能求出這2個(gè)蜜柚質(zhì)量均小于2000克的概率.

由頻率分布直方圖可知,蜜柚質(zhì)量在的頻率為,蜜柚質(zhì)量在,,的頻率依次為,,,,若按A方案收購(gòu):根據(jù)題意各段蜜柚個(gè)數(shù)依次為500,500,750,2000,1000,250,求出總收益為;若按B方案收購(gòu):收益為方案A的收益比方案B的收益高,應(yīng)該選擇方案A

由題得蜜柚質(zhì)量在的比例為2:3,

應(yīng)分別在質(zhì)量為,的蜜柚中各抽取2個(gè)和3個(gè).

記抽取質(zhì)量在的蜜柚為,,質(zhì)量在的蜜柚為,,

則從這5個(gè)蜜柚中隨機(jī)抽取2個(gè)的情況共有以下10種:

,,,,,,

其中質(zhì)量均小于2000克的僅有這1種情況,

故這2個(gè)蜜柚質(zhì)量均小于2000克的概率為

方案A好,理由如下:

由頻率分布直方圖可知,蜜柚質(zhì)量在的頻率為

同理,蜜柚質(zhì)量在,,

的頻率依次為,,,

若按A方案收購(gòu):

根據(jù)題意各段蜜柚個(gè)數(shù)依次為500,500,750,2000,1000,250,

于是總收益為

若按B方案收購(gòu):

蜜柚質(zhì)量低于2250克的個(gè)數(shù)為,

蜜柚質(zhì)量低于2250克的個(gè)數(shù)為,

收益為元.

方案A的收益比方案B的收益高,應(yīng)該選擇方案A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點(diǎn).

)求證:平面

)求平面AEF與平面BEC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問(wèn)卷調(diào)查.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.

1)估計(jì)該社區(qū)居民最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);

2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱(chēng)為網(wǎng)購(gòu)迷,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為網(wǎng)購(gòu)迷與性別有關(guān)系

總計(jì)

網(wǎng)購(gòu)迷

20

非網(wǎng)購(gòu)迷

45

總計(jì)

100

附:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的最大值;

(2)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),求證

(Ⅱ)是否存在正整數(shù),使得對(duì)一切恒成立?若存在,求出的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題正確的是(

①線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;

②殘差平方和越小的模型,擬合的效果越好;

③用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越小,說(shuō)明模型的擬合的效果越好;

④隨機(jī)誤差是衡量預(yù)報(bào)精確度的一個(gè)量,它滿(mǎn)足.

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)束相互獨(dú)立,第1局甲當(dāng)裁判.

)求第4局甲當(dāng)裁判的概率;

X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a<2,函數(shù)f(x)(x2axa)ex.

1)當(dāng)a1時(shí),求f(x)的單調(diào)遞增區(qū)間;

2)若f(x)的極大值是6e-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以棱長(zhǎng)為1的正方體的具有公共頂點(diǎn)的三條棱所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系Oxyz,點(diǎn)P在對(duì)角線AB上運(yùn)動(dòng),點(diǎn)Q在棱CD上運(yùn)動(dòng).

(1)當(dāng)P是AB的中點(diǎn),且2|CQ|=|QD|時(shí),求|PQ|的值;

(2)當(dāng)Q是棱CD的中點(diǎn)時(shí),試求|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案