【題目】設(shè)函數(shù)

1)當(dāng)時(shí),曲線與直線相切,求實(shí)數(shù)的值;

2)若函數(shù)[1,3]上存在單調(diào)遞增區(qū)間,求實(shí)數(shù)的取值范圍.

【答案】 m=﹣2mln2;(﹣,

【解析】

1)將a0代入fx),求出fx)的導(dǎo)數(shù),得到fx)=3,解得x的值,求出切點(diǎn)坐標(biāo),代入求出m的值即可;

2)假設(shè)函數(shù)fx)在[1,3]上不存在單調(diào)遞增區(qū)間,必有gx≤0,得到關(guān)于a的不等式組,解出即可.

1)當(dāng)a0時(shí),fx)=lnx+x2x∈(0,+∞),

fx2x0,

fx)=3,解得:x1x

代入fx)得切點(diǎn)坐標(biāo)為(1,1),或(,ln2),

將切點(diǎn)坐標(biāo)代入直線y3x+m,解得:m=﹣2mln2;

2fx2x2a,x[13],

設(shè)gx)=2x22ax+1

假設(shè)函數(shù)fx)在[1,3]上不存在單調(diào)遞增區(qū)間,必有gx≤0,

于是,解得:a,

故要使函數(shù)fx)在[13]上存在單調(diào)遞增區(qū)間,

a的范圍是(﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),、、,且都有,滿足的實(shí)數(shù)有且只有個(gè),給出下述四個(gè)結(jié)論:

①滿足題目條件的實(shí)數(shù)有且只有個(gè);②滿足題目條件的實(shí)數(shù)有且只有個(gè);

上單調(diào)遞增;④的取值范圍是

其中所有正確結(jié)論的編號(hào)是( )

A.①④B.②③C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃銷(xiāo)售某種食品,現(xiàn)邀請(qǐng)甲、乙兩個(gè)商家進(jìn)場(chǎng)試銷(xiāo)10天.兩個(gè)商家向超市提供的日返利方案如下:甲商家每天固定返利60元,且每賣(mài)出一件食品商家再返利3元;乙商家無(wú)固定返利,賣(mài)出不超出30件(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利10元. 經(jīng)統(tǒng)計(jì),試銷(xiāo)這10天兩個(gè)商家每天的銷(xiāo)量如圖所示的莖葉圖(莖為十位數(shù)字,葉為個(gè)位數(shù)字):

(1)現(xiàn)從甲商家試銷(xiāo)的10天中隨機(jī)抽取兩天,求這兩天的銷(xiāo)售量都小于30件的概率;

(2)根據(jù)試銷(xiāo)10天的數(shù)據(jù),將頻率視作概率,用樣本估計(jì)總體,回答以下問(wèn)題:

①記商家乙的日返利額為X(單位:元),求X的分布列和數(shù)學(xué)期望;

②超市擬在甲、乙兩個(gè)商家中選擇一家長(zhǎng)期銷(xiāo)售,如果僅從日返利額的數(shù)學(xué)期望考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為超市作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn),若對(duì)于實(shí)數(shù),函數(shù))的圖像上有且僅有6個(gè)不同的點(diǎn),使得成立,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①命題,則的否命題為,則

的必要不充分條件;

命題,使得的否定是:,均有

④命題,則的逆否命題為真命題

其中所有正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四樓錐中,,.

1)求的長(zhǎng).

2)求直線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①越小,XY有關(guān)聯(lián)的可信度越小;②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1;“若,則類(lèi)比推出,“若,則;④命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了“三段論”,推理形式錯(cuò)誤.其中說(shuō)法正確的有( )個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體ABCA1B1C1A1A,B1BC1C均垂直于平面ABC,ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)證明:AB1⊥平面A1B1C1;

求直線AC1與平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓錐的高,是圓錐底面的直徑,是底面圓周上一點(diǎn),的中點(diǎn),平面和平面將圓錐截去部分后的幾何體如圖所示.

1)求證:平面平面

2)若,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案