【題目】某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x)萬元,當年產量不足80千件時,C(x)=x2+10x(萬元);當年產量不少于80千件時,C(x)=51x+-1 450(萬元).通過市場分析,若每件售價為500元時,該廠年內生產的商品能全部銷售完.
(1)寫出年利潤L(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
【答案】(1);
(2)產量為100千件時,所獲利潤最大.
【解析】
試題分析:(1)分兩種情況進行研究:當時,投入的成本為萬元),根據年利潤=銷售收入-成本,列出函數關系式,當時,投入成本為 (萬元),根據年利潤=銷售收入-成本,列出函數關系式,最后寫成分段函數的形式,從而得到答案;(2)根據年利潤的解析式,分段研究函數的最值,當時,利用二次函數求最值;當時,利用基本不等式求解最值,最后比較兩個最值,即可得到結論.
試題解析:(1)當0<x<80,x∈N*時,
L(x)=-x2-10x-250=-x2+40x-250;
當x≥80,x∈N*時,
L(x)=-51x-+1 450-250=1 200-(x+),
∴
(2)當0<x<80,x∈N*時,L(x)=-(x-60)2+950,
∴當x=60時,L(x)取得最大值L(60)=950.
當x≥80,x∈N*時,L(x)=1 200-(x+),
∴當x=,即x=100時,L(x)取得最大值L(100)=1 000>950.
綜上所述,當x=100時,L(x)取得最大值1 000,
即年產量為100千件時,該廠在這一商品的生產中所獲利潤最大.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)經過點(,1),以原點為圓心、橢圓短半軸長為半徑的圓經過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是且各階段通過與否相互獨立.
(1)求該選手在復賽階段被淘汰的概率;
(2)設該選手在競賽中回答問題的個數為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856287)
已知點A(0,1)與B(, )都在橢圓C: (a>b>0)上,直線AB交x軸于點M.
(Ⅰ)求橢圓C的方程,并求點M的坐標;
(Ⅱ)設O為原點,點D與點B關于x軸對稱,直線AD交x軸于點N.問:y軸上是否存在點E,使得∠OEM=∠ONE?若存在,求點E的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,設圓:=4 cos 與直線l:= (∈R)交于A,B兩點.
(Ⅰ)求以AB為直徑的圓的極坐標方程;
(Ⅱ)在圓任取一點,在圓上任取一點,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知曲線C1的參數方程為: (θ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為: ,直線l的直角坐標方程為.
(l)求曲線C1和直線l的極坐標方程;
(2)已知直線l分別與曲線C1、曲線C2交異于極點的A,B,若A,B的極徑分別為ρ1,ρ2,求|ρ2﹣ρ1|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.
(1)請根據直方圖中的數據填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線上任意一點到的距離比到軸的距離大1,橢圓的中心在原點,一個焦點與的焦點重合,長軸長為4.
(Ⅰ)求曲線和橢圓的方程;
(Ⅱ)橢圓上是否存在一點,經過點作曲線的兩條切線(為切點)使得直線過橢圓的上頂點,若存在,求出切線的方程,不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數f(x)=x3-x滿足:對于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是( )
A. [-, ]
B. [-, ]
C. (-∞,- ]∪[,+∞)
D. (-∞,- ]∪[,+∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com