【題目】(導(dǎo)學(xué)號(hào):05856287)

已知點(diǎn)A(0,1)與B( )都在橢圓C (ab>0)上,直線ABx軸于點(diǎn)M.

(Ⅰ)求橢圓C的方程,并求點(diǎn)M的坐標(biāo);

(Ⅱ)設(shè)O為原點(diǎn),點(diǎn)D與點(diǎn)B關(guān)于x軸對(duì)稱,直線ADx軸于點(diǎn)N.問(wèn):y軸上是否存在點(diǎn)E,使得∠OEM=∠ONE?若存在,求點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1) y2=1. 點(diǎn)M(,0) (2) 在y軸上存在點(diǎn)E,使得∠OEM=∠ONE,且點(diǎn)E的坐標(biāo)為(0,2)或(0,-2).

【解析】試題分析:(1)由點(diǎn)A(0,1)與B( )都在橢圓C: ab0)上,利用待定系數(shù)法能求出橢圓C的方程和直線AB的方程,由此能求出點(diǎn)M的坐標(biāo).

(2)由已知求出D(,),直線AD:3x+2y2=0,從而求出N(,0),設(shè)E(0,y0),由OEM=ONE,得到||=||,從而求出y軸上是否存在點(diǎn)E(±2,0),使得OEM=ONE

試題解析:

(Ⅰ)由題意得

故橢圓C的方程為y2=1.

直線AB方程為y=-x+1,與x軸交于點(diǎn)M(2,0).

(Ⅱ)因?yàn)辄c(diǎn)D與點(diǎn)B關(guān)于x軸對(duì)稱,

所以D(,-),

直線AD方程為y=-x+1,

x軸交點(diǎn)N(,0).

“存在點(diǎn)E(0,yE)使得∠OEM=∠ONE”等價(jià)于“存在點(diǎn)E(0,yE)使得”,

yE滿足y=|xM||xN|.

y=2×=4,∴yE=±2,

故在y軸上存在點(diǎn)E,使得∠OEM=∠ONE,且點(diǎn)E的坐標(biāo)為(0,2)或(0,-2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了減少霧霾,還城市一片藍(lán)天,某市政府于12月4日到12月31日在主城區(qū)實(shí)行車輛限號(hào)出行政策,鼓勵(lì)民眾不開(kāi)車低碳出行,某甲乙兩個(gè)單位各有200名員工,為了了解員工低碳出行的情況,統(tǒng)計(jì)了12月5日到12月14日共10天的低碳出行的人數(shù),畫出莖葉圖如下:

(1)若甲單位數(shù)據(jù)的平均數(shù)是122,求;

(2)現(xiàn)從如圖的數(shù)據(jù)中任取4天的數(shù)據(jù)(甲、乙兩單位中各取2天),記其中甲、乙兩單位員工低碳出行人數(shù)不低于130人的天數(shù)為, ,令,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形與梯形所在平面互相垂直,,,點(diǎn)中點(diǎn) .

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·河西五市二聯(lián))下列說(shuō)法正確的是(  )

A. 命題x∈Rex0”的否定是x∈R,ex0”

B. 命題已知x,y∈R,若xy≠3,則x≠2y≠1”是真命題

C. x22xaxx∈[1,2]上恒成立“(x22x)min≥(ax)minx∈[1,2]上恒成立

D. 命題a=-1,則函數(shù)f(x)ax22x1只有一個(gè)零點(diǎn)的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為(  )

A. 26+4 B. 27+4 C. 34+4 D. 17+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,滿足,且、的等差中項(xiàng),數(shù)列滿足,其前項(xiàng)和為,且.

1)求數(shù)列,的通項(xiàng)公式;

2)數(shù)列的前項(xiàng)和為,若不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本為Cx萬(wàn)元,當(dāng)年產(chǎn)量不足80千件時(shí),Cxx2+10x萬(wàn)元;當(dāng)年產(chǎn)量不少于80千件時(shí),Cx=51x+-1 450萬(wàn)元).通過(guò)市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠年內(nèi)生產(chǎn)的商品能全部銷售完

1寫出年利潤(rùn)L萬(wàn)元關(guān)于年產(chǎn)量x千件的函數(shù)解析式;

2年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)過(guò)點(diǎn)(1, ),且離心率e=.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足·=0,試判斷直線l是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C,其中e為橢圓離心率),焦距為2,過(guò)點(diǎn)M4,0)的直線l與橢圓C交于點(diǎn)A,B,點(diǎn)BAM之間.又點(diǎn)A,B的中點(diǎn)橫坐標(biāo)為

)求橢圓C的標(biāo)準(zhǔn)方程;

)求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案