已知橢圓的左、右焦點分別為,若橢圓上存在一點使,則該橢圓的離心率的取值范圍為          

解析試題分析:在△PF1F2中,由正弦定理得:,則由已知得:,
即:a|PF1|=|cPF2|
設點(x0,y0)由焦點半徑公式,
得:|PF1|=a+ex0,|PF2|=a-ex0,則a(a+ex0)=c(a-ex0
解得:x0=,由橢圓的幾何性質知:x0>-a則>-a
整理得e2+2e-1>0,解得:e<--1或e>-1,又e∈(0,1),
故橢圓的離心率:e∈(-1,1),故答案為:(-1,1).
考點:本題主要考查了橢圓的定義,性質及焦點三角形的應用,特別是離心率應是橢圓考查的一個亮點,多數(shù)是用a,b,c轉化,用橢圓的范圍來求解離心率的范圍.
點評:解決該試題的關鍵是能通過橢圓的定義以及焦點三角形的性質得到a,b,c的關系式的轉換,進而得到離心率的范圍。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

若拋物線的焦點與雙曲線的左焦點重合,則實數(shù)=    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

橢圓與雙曲線有相同的焦點,則實數(shù)_________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

①若,則方程有實根;
②“若,則”的否命題;
③“矩形的對角線相等”的逆命題;
④“若,則、至少有一個為零”的逆否命題 .
以上命題中的真命題有_______________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

過點的拋物線的標準方程是                                      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

拋物線在點(0,1)處的切線方程為           

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知點,橢圓與直線交于點、,則的周長為      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知動圓過點,且與圓相內切,則動圓的圓心的軌跡方程_____________;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

雙曲線的虛軸長是實軸長的2倍,則         。

查看答案和解析>>

同步練習冊答案