【題目】如圖所示的多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP=120°,AD=3,AP=5,.
(Ⅰ)試確定點(diǎn)F的位置,使得直線EF∥平面PDC;
(Ⅱ)若PB=3BF,求直線AF與平面PBC所成角的正弦值.
【答案】(Ⅰ)當(dāng)點(diǎn)F為BP中點(diǎn)時,使得直線EF∥平面PDC;(Ⅱ).
【解析】
(Ⅰ)設(shè)F為BP中點(diǎn),取AP中點(diǎn)G,連結(jié)EF、EG、FG,推導(dǎo)出GF∥AB∥CD,EG∥DP,從而平面GEF∥平面PDC,進(jìn)而當(dāng)點(diǎn)F為BP中點(diǎn)時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點(diǎn),DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標(biāo)系,求得平面PBC的一個法向量,的坐標(biāo),代入公式sinθ求解.
(Ⅰ)設(shè)F為BP中點(diǎn),取AP中點(diǎn)G,連結(jié)EF、EG、FG,
∵AD⊥平面PDC,四邊形ABCD為平行四邊形,E為AD的中點(diǎn),
∴GF∥AB∥CD,EG∥DP,
∵EG∩FG=G,DP∩CD=D,∴平面GEF∥平面PDC,
∵EF平面GEF,
∴當(dāng)點(diǎn)F為BP中點(diǎn)時,使得直線EF∥平面PDC.
(Ⅱ)以D為原點(diǎn),DC為x軸,在平面PDC中過D作CD垂線為y軸,DA為z軸,建立空間直角坐標(biāo)系,
∵E為AD的中點(diǎn),F為線段PB上的一點(diǎn),∠CDP=120°,AD=3,AP=5,.
∴cos120°,解得CD=2,
所以A(0,0,3),B(2,0,3),P(﹣2,2,0),C(2,0,0),
設(shè)F(a,b,c),由PB=3BF,得,
即(a﹣2,b,c﹣3)(﹣8,2,﹣3),
解得a,b,c=2,∴F(,,2),
(,﹣1),(0,0,3),(﹣4,2,0),
設(shè)平面PBC的一個法向量(x,y,z),
則,取x=1,得(1,,0),
設(shè)直線AF與平面PBC所成角為θ,
則直線AF與平面PBC所成角的正弦值為:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,
(1)若,且在其定義域上存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù), ,若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過線段的中點(diǎn)作軸的垂線分別交, 于點(diǎn)、,證明: 在點(diǎn)處的切線與在點(diǎn)處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,在高三年級中隨機(jī)選取名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于小時的有人,在這人中分?jǐn)?shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時間不足于小時的人中,在檢測考試中數(shù)學(xué)平均成績不足分的占.
(1)請完成列聯(lián)表;并判斷是否有的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;
分?jǐn)?shù)不少于分 | 分?jǐn)?shù)不足分 | 合計 | |
線上學(xué)習(xí)時間不少于小時 | |||
線上學(xué)習(xí)時間不足小時 | |||
合計 |
(2)在上述樣本中從分?jǐn)?shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時間不少于小時和線上學(xué)習(xí)時間不足小時的學(xué)生共名,若在這名學(xué)生中隨機(jī)抽取人,求這人每周線上學(xué)習(xí)時間都不足小時的概率.(臨界值表僅供參考)
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)將的方程化為普通方程,將的方程化為直角坐標(biāo)方程;
(2)已知直線的參數(shù)方程為(,為參數(shù),且),與交于點(diǎn),與交于點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長度單位相同.
(1)求圓的極坐標(biāo)方程;
(2)若直線:(為參數(shù))被圓截得的弦長為2,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長為2的正方體中,E為DC中點(diǎn),F在線段上運(yùn)動,則三棱錐的外接球的表面積最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,為矩形,為等腰梯形,,分別為,中點(diǎn),,,.
(1)證明:平面;
(2)求二面角的正弦值;
(3)線段上是否存在點(diǎn),使得平面,若存在求出的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求的極坐標(biāo)方程;
(2)若與恰有4個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E,F分別為B1C1,C1D1的中點(diǎn),點(diǎn)P是上底面A1B1C1D1內(nèi)一點(diǎn),且AP∥平面EFDB,則cos∠APA1的最小值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com