【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條。假定這種圍巾的銷售量t是售價x)(的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響

1試寫出圍巾銷售每日的毛利潤y關于售價x)(的函數(shù)關系式不必寫出定義域,并幫助小張定價,使得每日的毛利潤最高每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價;

2考慮到這批圍巾的管理、倉儲等費用為200元只要圍巾沒有售完,均須支付200元天,管理、倉儲等費用與圍巾數(shù)量無關,試問小張應該如何定價,使這批圍巾的總利潤最高總利潤總毛利潤總管理、倉儲等費用

【答案】1,圍巾定價為22元或23元時,每日的利潤最高2定價為25元

【解析】

試題分析:1根據(jù)題意先求出銷售量t與售價x之間的關系式,再利用毛利潤為每日賣出商品的進貨價與銷售價之間的差價,確定毛利潤y關于售價x)(xZ+的函數(shù)關系式,利用二次函數(shù)求最值的方法可求;2根據(jù)總利潤=總毛利潤-總管理、倉儲等費用,構(gòu)建函數(shù)關系,利用基本不等式可求最值

試題解析:設tkxb,,解得k=-2,b70,∴t702x 3分

1

,圍巾定價為22元或23元時,每日的利潤最高 8分

2 設售價x時總利潤為z,

,則,

上遞減,在上遞增,

,即時,取最大值10000

小張的這批圍巾定價為25元時,這批圍巾的總利潤最高 15

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條相交直線a,b,a∥平面α,則b與平面α的位置關系是 (  )

A. b平面α

B. b⊥平面α

C. b∥平面α

D. b與平面α相交,或b∥平面α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知均為直線,為平面,下面關于直線與平面關系的命題:

任意給定一條直線與一個平面,則平面內(nèi)必存在與垂直的直線;

內(nèi)必存在與相交的直線;

,必存在與都垂直的直線;

其中正確命題的個數(shù)為

A.0個 B.1個

C.2個 D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域為

1的值;

2上遞減,根據(jù)單調(diào)性的定義求實數(shù)的取值范圍;

32的條件下,若函數(shù)在區(qū)間上有且僅有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.

1若圓心也在直線上,過點作圓的切線,求切線方程;

2若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)的單調(diào)遞增區(qū)間;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級學生身體素質(zhì)體能測試的成績(百分制)分布在內(nèi),同時為了了解學生愛好數(shù)學的情況,從中隨機抽取了名學生,這名學生體能測試成績的頻率分布直方圖如圖所示,各分數(shù)段的愛好數(shù)學的人數(shù)情況如表所示.

(1)求的值;

(2)用分層抽樣的方法,從體能成績在愛好數(shù)學學生中隨機抽取6人參加某項活動,現(xiàn)從6人中隨機選取2人擔任領隊,求兩名領隊中恰有1人體能成績在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,點在線段上.

(1)中點,證明:平面;

(2)長是多少時,三棱錐的體積是三棱柱的體積的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面為直角,,,分別為的中點.

(Ⅰ)證明: 平面;

(Ⅱ)若,求二面角.

查看答案和解析>>

同步練習冊答案