【題目】已知兩條相交直線a,b,a∥平面α,則b與平面α的位置關(guān)系是 ( )
A. b平面α
B. b⊥平面α
C. b∥平面α
D. b與平面α相交,或b∥平面α
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,平面,分別為的中點.
(1)求證:平面;
(2)求平面與平面所成銳二面角的大;
(3)在線段上是否存在一點,使直線與直線所成的角為?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于棱柱的說法中,錯誤的是( )
A. 三棱柱的底面為三角形
B. 一個棱柱至少有五個面
C. 若棱柱的底面邊長相等,則它的各個側(cè)面全等
D. 五棱柱有5條側(cè)棱、5個側(cè)面,側(cè)面為平行四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰直角三角形,其中, .點、分別是、
的中點,現(xiàn)將△沿著邊折起到△位置, 使⊥,連結(jié)、.
(Ⅰ)求證:BC⊥PB
(Ⅱ)求PC與平面ABCD所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a≠0,函數(shù)
(1) 若a=-3,求f(10),f(f(10))的值;
(2) 若f(1-a)=f(1+a),求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間四邊形ABCD中,若AB=AD=AC=CB=CD=BD,則AC與BD所成角為 ( )
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個不同的平面,l是一條直線,以下命題正確的是( )
A.若l⊥α,α⊥β,則lβ
B.若l∥α,α∥β,則lβ
C.若l⊥α,α∥β,則l⊥β
D.若l∥α,α⊥β,則l⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α、β是兩個平面,直線lα,lβ,若以①l⊥α;②l∥β;③α⊥β中兩個為條件,另一個為結(jié)論構(gòu)成三個命題,則其中正確的命題有 ( )
A. ①③②;①②③
B. ①③②;②③①
C. ①②③;②③①
D. ①③②;①②③;②③①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條。假定這種圍巾的銷售量t(條)是售價x(元)()的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關(guān)于售價x(元)()的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com