已知橢圓C=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設經過點F的直線交橢圓CM,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

(1) =1. (2)

解析試題分析:解:(Ⅰ)設橢圓C的半焦距是c.依題意,得c=1.
因為橢圓C的離心率為,
所以a=2c=2,b2a2c2=3.   2分
故橢圓C的方程為=1.   3分
(Ⅱ)當MNx軸時,顯然y0=0.   4分
MNx軸不垂直時,可設直線MN的方程為
yk(x-1)(k≠0).  5分

消去y并整理得(3+4k2)x2-8k2x+4(k2-3)=0.   6分
M(x1,y1),N(x2,y2),線段MN的中點為Q(x3,y3),
x1x2.
所以x3y3k(x3-1)=.  8分
線段MN的垂直平分線的方程為
y=-.
在上述方程中,令x=0,得y0.  9分
k<0時,+4k≤-4;當k>0時, +4k≥4.
所以-y0<0或0<y0.  11分
綜上,y0的取值范圍是.  12分
考點:本試題考查了橢圓的知識。
點評:對于橢圓方程的求解主要是根據其性質滿足的的a,b,c的關系式來解得,同時對于直線與橢圓的相交問題,一般采用聯(lián)立方程組的思想,結合韋達定理和判別式來分析參數(shù)的范圍等等,或者研究最值,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標系中,橢圓的焦距為2,且過點.
求橢圓的方程;
若點分別是橢圓的左、右頂點,直線經過點且垂直于軸,點是橢圓上異于,的任意一點,直線于點

(ⅰ)設直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設過點垂直于的直線為.求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題13分)設橢圓的左右焦點分別為,,上頂點為,過點垂直的直線交軸負半軸于點,且的中點.

(1)求橢圓的離心率;
(2)若過點的圓恰好與直線相切,求橢圓的方程;
(3)在(2)的條件下過右焦點作斜率為的直線與橢圓相交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形為菱形,如果存在,求出的取值范圍,如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓、兩點.

(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,且過點,為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線與橢圓相交于、兩點(點兩點之間),若的面積相等,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題16分)設雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。

查看答案和解析>>

同步練習冊答案