已知得頂點、分別是離心率為的圓錐曲線的焦點,頂點在該曲線上,一同學已正確地推得,當時有 ,類似地,當時,有               .

試題分析:猜想
證明:當時,圓錐曲線為雙曲線,設雙曲線的焦距為,實軸為,
,由正弦定理得,∴,∴恒成立.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,橢圓的右焦點為,離心率為
分別過,的兩條弦,相交于點(異于,兩點),且
(1)求橢圓的方程;
(2)求證:直線,的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C:的左右焦點分別為F1,F2,P為橢圓上異于端點的任意的點,PF1,PF2的中點分別為M,N,O為坐標原點,四邊形OMPN的周長為2,則△的周長是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知分別是橢圓的左右焦點,過垂直與軸的直線交橢圓于兩點,若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的離心率為,頂點與橢圓的焦點相同,那么雙曲線的焦點坐標為_____;漸近線方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

秒“嫦娥二號”探月衛(wèi)星由長征三號丙運載火箭送入近地點高度約公里、遠地點高度約萬公里的直接奔月橢圓(地球球心為一個焦點)軌道Ⅰ飛行。當衛(wèi)星到達月球附近的特定位置時,實施近月制動及軌道調整,衛(wèi)星變軌進入遠月面公里、近月面公里(月球球心為一個焦點)的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機變軌進入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開展相關技術試驗和科學探測。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點,求橢圓軌道Ⅱ的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的方程為,其離心率為,經(jīng)過橢圓焦點且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:與橢圓C交于A、B兩點,P為橢圓上的點,O為坐標原點,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知焦點在軸上的橢圓的離心率是,則的值為 (  )
A. B.C.D.

查看答案和解析>>

同步練習冊答案