已知方程+=1表示焦點在y軸上的橢圓,則m的取值范圍是       (   )
        
A.m<-1或1<m<B.1<m<2
C.m<-1或1<m<2D.m<2
A

分析:根據(jù)焦點在y軸上的橢圓的方程的特點是方程中y2的分母比x2分母大且是正數(shù),列出不等式組,求出m的范圍.
解:+=1表示焦點在y軸上的橢圓,
∴2-m>|m|-1>0
解得m<-1或1<m<
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點為曲線C上一點,求證:直線與曲線C有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

20.(本小題滿分14分)

已知圓和橢圓的一個公共點為為橢圓的右焦點,直線與圓相切于點
(Ⅰ)求值和橢圓的方程;
(Ⅱ)圓上是否存在點,使為等腰三角形?若存在,求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中心在原點,焦點在軸上的橢圓,離心率,且經(jīng)過拋物線的焦點.
(I)求橢圓的標準方程;
(II)若過點B(2,0)的直線L(斜率不等于零)與橢圓交于不同的兩點E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線L的方程。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓的左右焦點,拋物線以為頂點,為焦點,設(shè)為橢圓與拋物線的一個交點,橢圓離心率為,且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓上一點P到其左焦點的距離為3,到右焦點的距離為1,則P點到右準線的距離為
A. 6B. 2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓經(jīng)過原點,且焦點F1(1,0),F(xiàn)(3,0),則其離心率為。  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過的直線交橢圓于,若的周長為,則橢圓方程為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的兩個焦點分別為,點在橢圓上,且
,則橢圓的離心率等于          

查看答案和解析>>

同步練習(xí)冊答案