12.已知集合A={-1,1},B={1,2},則A∪B=( 。
A.B.{-1,1}C.{1,2}D.{-1,1,2}

分析 根據(jù)兩集合并集的感念進(jìn)行求解即可.

解答 解:集合A={-1,1},B={1,2},則A∪B={-1,1,2},
故選:D.

點(diǎn)評(píng) 本題主要考查兩集合的并集的感念,注意有重復(fù)的元素要當(dāng)做一個(gè)處理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f(x)的定義域?yàn)椋?,3),則函數(shù)f(x2)的定義域是($-\sqrt{3}$,-1)∪(1,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線與拋物線y2=4x分別相交于異于原點(diǎn)O的兩點(diǎn)A,B,F(xiàn)為拋物線y2=4x的焦點(diǎn),已知∠AFB=$\frac{2π}{3}$,則該雙曲線的離心率為$\sqrt{13}$或$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.△ABC中,若cosA=$\frac{3}{5}$,sinB=$\frac{5}{13}$,則cosC=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=x3-tx2+3x,若對(duì)于任意的a∈[2,4],b∈(4,6],函數(shù)f(x)在區(qū)間[a,b]上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是(  )
A.(-∞,$\frac{37}{4}$]B.(-∞,5]C.[5,+∞)D.[$\frac{37}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3(x<0)}\\{0(x=0)}\\{-{x}^{2}+2x-3(x>0)}\end{array}\right.$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,若tanA=$\frac{3}{4}$,AB=5,BC=2$\sqrt{3}$,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在長方體ABCD-A1B1C1D1中,AB=AD=3cm,AA1=4cm,則三棱錐A1ABD的體積為6cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{a}{3}{x^3}-\frac{1}{2}(a+1){x^2}+x-\frac{1}{3}$(a∈R).
(1)若a<0,求函數(shù)f(x)的極值;
(2)當(dāng)a≤1時(shí),判斷函數(shù)f(x)在區(qū)間[0,2]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案