A. | (-∞,$\frac{37}{4}$] | B. | (-∞,5] | C. | [5,+∞) | D. | [$\frac{37}{4}$,+∞) |
分析 由題意可得f′(x)≤0即3x2-2tx+3≤0在[2,6]上恒成立,由二次函數(shù)的性質(zhì)可得不等式組.
解答 解:∵函數(shù)f(x)=x3-tx2+3x,f′(x)=3x2-2tx+3,
若對于任意的a∈[2,4],b∈(4,6],函數(shù)f(x)在區(qū)間[a,b]上單調(diào)遞減,
則f′(x)≤0即3x2-2tx+3≤0在[2,6]上恒成立,
∴$\left\{\begin{array}{l}{f′(2)=12-4t+3≤0}\\{f′(6)=108-12t+3≤0}\end{array}\right.$,解得t≥$\frac{37}{4}$,
故選:D.
點(diǎn)評 本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)符號間的關(guān)系,二次函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,+∞) | B. | (-3,-2] | C. | [-3,0] | D. | [-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | { 2,3 } | B. | { 1,5,6,7 } | C. | { 6,7 } | D. | { 1,5 } |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com