【題目】設(shè)函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.
【答案】(1)見解析(2)不存在,使得.
【解析】【試題分析】(1)先對函數(shù)求導(dǎo),再運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系分析討論函數(shù)的符號,進(jìn)而運(yùn)用分類整合思想對實(shí)數(shù)進(jìn)行分三類進(jìn)行討論并判定其單調(diào)性,求出單調(diào)區(qū)間;(2)先假設(shè)滿足題設(shè)條件的參數(shù)存在,再借助題設(shè)條件,推得,即,亦即
進(jìn)而轉(zhuǎn)化為判定函數(shù)在上是單調(diào)遞增的問題,然后借助導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系運(yùn)用反證法進(jìn)行分析推證,從而作出判斷:
解:(Ⅰ) 定義域?yàn)?/span>,
,
令,
①當(dāng)時(shí), , ,故在上單調(diào)遞增,
②當(dāng)時(shí), , 的兩根都小于零,在上, ,
故在上單調(diào)遞增,
③當(dāng)時(shí), , 的兩根為,
當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), ;
故分別在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ)由(Ⅰ)知, ,
因?yàn)?/span>.
所以,
又由(1)知, ,于是,
若存在,使得,則,即,
亦即()
再由(Ⅰ)知,函數(shù)在上單調(diào)遞增,
而,所以,這與()式矛盾,
故不存在,使得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1和l2 , 它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若 ,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意 都有恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅲ)設(shè)函數(shù) ,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實(shí)測得到的,其他節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).
節(jié)氣 | 冬至 | 小寒(大雪) | 大寒(小雪) | 立春(立冬) | 雨水(霜降) | 驚蟄(寒露) | 春分(秋分) |
晷影長(寸) | 135 | 75.5 | |||||
節(jié)氣 | 清明(白露) | 谷雨(處暑) | 立夏(立秋) | 小滿(大暑) | 芒種(小暑) | 夏至 | |
晷影長(寸) | 16.0 |
已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長應(yīng)為__________寸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
(1)根據(jù)上表可得回歸直線方程 = x+ ,其中 =0.76, = ﹣ ,據(jù)此估計(jì),該社區(qū)一戶年收入為15萬元的家庭年支出為多少?
(2)若從這5個(gè)家庭中隨機(jī)抽選2個(gè)家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個(gè)不超過10萬元,另一個(gè)超過11萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若函數(shù)在處的切線方程為,求和的值;
(II)討論方程的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,則矩形ABCD的面積最大是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C 上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足
(1) 求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn) 在直線x=-3上,且.證明過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com