【題目】如圖,在直三棱柱中,,,,,分別是,的中點.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)由直三棱柱側(cè)棱與底面垂直可得,結(jié)合已知,得到平面,從而得到平面平面;
(2)取的中點,連接,.由三角形中位線定理可得,且,得到四邊形為平行四邊形,進一步得到.由線面平行的判定得到平面;
(3)由已知求解直角三角形得到,求得底面積,代入三棱錐體積公式求得三棱錐的體積.
解析:(1)證明:在三棱柱中,
底面,所以.
又因為,,
所以平面,
又平面,
所以平面平面
(2)證明:取的中點,連接,.
因為,,分別是,,的中點,
所以,且,.
因為,且,所以,且,
所以四邊形為平行四邊形,所以.
又因為平面,平面,所以平面.
(3)因為,,,所以.
所以三棱錐的體積
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
求橢圓的標準方程;
設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點M,N試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標及定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右頂點分別為A,B,點P在橢圓O上運動,若△PAB面積的最大值為,橢圓O的離心率為.
(1)求橢圓O的標準方程;
(2)過B點作圓E:的兩條切線,分別與橢圓O交于兩點C,D(異于點B),當r變化時,直線CD是否恒過某定點?若是,求出該定點坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長情況,在該批樹苗中隨機抽取了容量為120的樣本,測量樹苗高度(單位:,經(jīng)統(tǒng)計,其高度均在區(qū)間,內(nèi),將其按,,,,,,,,,,,分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中的值,并估計這批樹苗的平均高度(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個試驗區(qū),部分數(shù)據(jù)如下列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有的把握認為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有5名男生和3名女生站成一排照相,
(1)3名女生站在一起,有多少種不同的站法?
(2)3名女生次序一定,但不一定相鄰,有多少種不同的站法?
(3)3名女生不站在排頭和排尾,也互不相鄰,有多少種不同的站法?
(4)3名女生中,A,B要相鄰,A,C不相鄰,有多少種不同的站法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與x軸負半軸交于,離心率.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會”,某機構(gòu)隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是2:1.
(Ⅰ)求圖中的值;
(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?
(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有99.9%的把握認為“中老年人”比“青少年人”更加關(guān)注“兩會”?
關(guān)注 | 不關(guān)注 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com