【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P是單位圓上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線與射線y=x(x≥0)交于點(diǎn)Q,與x軸交于點(diǎn)M.記∠MOP=α,且α∈(﹣, ).
(Ⅰ)若sinα=,求cos∠POQ;
(Ⅱ)求△OPQ面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為(),曲線的參數(shù)方程為
(1)寫出直線及曲線的直角坐標(biāo)方程;
(2)過點(diǎn)平行于直線的直線與曲線交于、兩點(diǎn),若,求點(diǎn)軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過抽祥,獲得了某年位居民毎人的月均用水量(單位:噸),將數(shù)據(jù)按照分成組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若該市有萬居民,估計(jì)全市居民中月均用水量不低于噸的人數(shù),并說明理由;
(3)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,拋物線上橫坐標(biāo)為的點(diǎn)到拋物線頂點(diǎn)的距離與該點(diǎn)到拋物線準(zhǔn)線的距離相等。
(1)求拋物線的方程;
(2)設(shè)直線與拋物線交于兩點(diǎn),若,求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專論測(cè)高望遠(yuǎn).其中有一題:今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測(cè)量海島上一座山峰的高度,立兩根高三丈的標(biāo)桿和,前后兩竿相距步,使后標(biāo)桿桿腳與前標(biāo)桿桿腳與山峰腳在同一直線上,從前標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、、三點(diǎn)共線,從后標(biāo)桿桿腳退行步到,人眼著地觀測(cè)到島峰,、、三點(diǎn)也共線,則山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有兩個(gè)相異實(shí)根,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條公路AP與AQ夾角A為鈍角,其正弦值是 .甲乙兩人從A點(diǎn)出發(fā)沿著兩條公路進(jìn)行搜救工作,甲沿著公路AP方向,乙沿著公路AQ方向.
(1)當(dāng)甲前進(jìn)5km的時(shí)候到達(dá)P處,同時(shí)乙到達(dá)Q處,通訊測(cè)得甲乙兩人相距 km,求乙在此時(shí)前進(jìn)的距離AQ;
(2)甲在5公里處原地未動(dòng),乙回頭往A方向行走至M點(diǎn)收到甲發(fā)出的信號(hào),此時(shí)M點(diǎn)看P、Q兩點(diǎn)的張角為(張角為QMP),求甲乙兩人相距的距離MP的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 9 |
發(fā)芽率(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;
(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).
附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:,,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com