已知是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,

① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿(mǎn)足

(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;

(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;

(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,當(dāng),且時(shí),

 

【答案】

(Ⅰ)函數(shù)是集合中的元素.

(Ⅱ)方程有且只有一個(gè)實(shí)數(shù)根.

(Ⅲ)對(duì)于任意符合條件的,總有成立.

【解析】

試題分析:(Ⅰ)因?yàn)棰佼?dāng)時(shí),

所以方程有實(shí)數(shù)根0;

,

所以,滿(mǎn)足條件;

由①②,函數(shù)是集合中的元素.            5分

(Ⅱ)假設(shè)方程存在兩個(gè)實(shí)數(shù)根,,

,.

不妨設(shè),根據(jù)題意存在,

滿(mǎn)足.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_DA.files/image020.png">,,且,所以.

與已知矛盾.又有實(shí)數(shù)根,

所以方程有且只有一個(gè)實(shí)數(shù)根.                     10分

(Ⅲ)當(dāng)時(shí),結(jié)論顯然成立;                   11分

當(dāng),不妨設(shè).

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_DA.files/image027.png">,且所以為增函數(shù),那么.

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_DA.files/image031.png">,所以函數(shù)為減函數(shù),

所以.

所以,即.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_DA.files/image036.png">,所以, (1)

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_DA.files/image038.png">,所以, (2)

(1)(2)得.

所以.

綜上,對(duì)于任意符合條件的,總有成立.  14分

考點(diǎn):本題主要考查集合的概念,函數(shù)與方程,導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,,反證法,不等式的證明。

點(diǎn)評(píng):綜合題,本題綜合性較強(qiáng),難度較大。證明方程只有一個(gè)實(shí)根,可通過(guò)構(gòu)造函數(shù),研究其單調(diào)性實(shí)現(xiàn),本解法運(yùn)用的是反證法。由自變量取值,且,確定函數(shù)值的關(guān)系,關(guān)鍵是如何實(shí)現(xiàn)兩者的有機(jī)轉(zhuǎn)換。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:北京市東城區(qū)2012屆高三上學(xué)期期末教學(xué)統(tǒng)一檢測(cè)數(shù)學(xué)文科試題 題型:044

已知M是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意f(x)∈M,①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)滿(mǎn)足

(Ⅰ)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在x0∈(m,n),使得等式成立.試用這一性質(zhì)證明:方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市東城區(qū)2012屆高三上學(xué)期期末教學(xué)統(tǒng)一檢測(cè)數(shù)學(xué)理科試題 題型:044

已知M是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意f(x)∈M,①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)滿(mǎn)足

(Ⅰ)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意,都存在x0∈(m,n),使得等式成立.試用這一性質(zhì)證明:方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根;

(Ⅲ)對(duì)任意f(x)∈M,且x∈(a,b),求證:對(duì)于f(x)定義域中任意的x1,x2,x3,當(dāng),且時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題共14分)已知是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿(mǎn)足

(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;

(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;

(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共14分)已知是由滿(mǎn)足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿(mǎn)足

(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;

(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601082951154431/SYS201205260110545115146678_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案