已知M是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意f(x)∈M,①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)滿足.
(Ⅰ)判斷函數(shù)是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意,都存在x0∈(m,n),使得等式成立.試用這一性質(zhì)證明:方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意f(x)∈M,且x∈(a,b),求證:對(duì)于f(x)定義域中任意的x1,x2,x3,當(dāng),且時(shí),.
解:(Ⅰ)因?yàn)棰佼?dāng)時(shí),, 所以方程有實(shí)數(shù)根0; 、, 所以,滿足條件; 由①②,函數(shù)是集合中的元素 5分 (Ⅱ)假設(shè)方程存在兩個(gè)實(shí)數(shù)根,, 則,. 不妨設(shè),根據(jù)題意存在, 滿足. 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0020/a330b32e39d8b49cdc09acc9c520dbde/C/Image263.gif" width=65 height=21>,,且,所以. 與已知矛盾.又有實(shí)數(shù)根, 所以方程有且只有一個(gè)實(shí)數(shù)根 10分 (Ⅲ)當(dāng)時(shí),結(jié)論顯然成立; 當(dāng),不妨設(shè). 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0020/a330b32e39d8b49cdc09acc9c520dbde/C/Image272.gif" width=64 HEIGHT=26>,且所以為增函數(shù),那么. 又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0020/a330b32e39d8b49cdc09acc9c520dbde/C/Image276.gif" width=84 height=21>,所以函數(shù)為減函數(shù), 所以. 所以,即. 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0020/a330b32e39d8b49cdc09acc9c520dbde/C/Image246.gif" width=74 height=26>,所以 (1) 又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4926/0020/a330b32e39d8b49cdc09acc9c520dbde/C/Image247.gif" width=74 height=26>,所以 (2) (1)(2)得即. 所以. 綜上,對(duì)于任意符合條件的,總有成立 14分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:北京市東城區(qū)2012屆高三上學(xué)期期末教學(xué)統(tǒng)一檢測(cè)數(shù)學(xué)文科試題 題型:044
已知M是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意f(x)∈M,①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)滿足.
(Ⅰ)判斷函數(shù)是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在x0∈(m,n),使得等式成立.試用這一性質(zhì)證明:方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省、二中高三上學(xué)期期末聯(lián)考理科數(shù)學(xué)卷(解析版) 題型:解答題
已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足.
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013041717111050787924/SYS201304171712115859168554_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題共14分)已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601110591788514/SYS201205260113223396550013_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,,當(dāng),且時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共14分)已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意,①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601082951154431/SYS201205260110545115146678_ST.files/image008.png">,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com