如圖,摩天輪的半徑為50 m,點(diǎn)O距地面的高度為60 m,摩天輪做勻速轉(zhuǎn)動(dòng),每3 min轉(zhuǎn)一圈,摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處.

(1)試確定在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度;
(2)在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面超過(guò)85 m?

(1) y=60-50cos(t≥0) (2) 在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),點(diǎn)P距離地面超過(guò)85 m的時(shí)間有1分鐘.

解析試題分析:(1)解:設(shè)點(diǎn)P離地面的距離為y,則可令 yAsin(ωtφ)+b.
由題設(shè)可知A=50,b=60.                                           2分
T=3,所以ω,從而y=50sin(tφ)+60.                  4分
再由題設(shè)知t=0時(shí)y=10,代入y=50sin(tφ)+60,得sinφ=-1,從而φ=-.
6分
因此,y=60-50cos(t≥0).                                       8分
(2)要使點(diǎn)P距離地面超過(guò)85 m,則有y=60-50cost>85,即cost<-.
10分
于是由三角函數(shù)基本性質(zhì)推得t,即1<t<2.                 12分
所以,在摩天輪轉(zhuǎn)動(dòng)的一圈內(nèi),點(diǎn)P距離地面超過(guò)85 m的時(shí)間有1分鐘. 
14分
考點(diǎn):三角函數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用摩天輪的轉(zhuǎn)動(dòng)有周期性,以及點(diǎn)的坐標(biāo)的表示來(lái)得到解析式,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)在中,若,,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(其中,,)的最大值為2,最小正周期為.
(1)求函數(shù)的解析式;
(2)若函數(shù)圖象上的兩點(diǎn)的橫坐標(biāo)依次為,為坐標(biāo)原點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)處取最小值.
(1)求的值;
(2)在ABC中,分別是角A,B,C的對(duì)邊,已知,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=,∠ABC

(1)求△ABC的面積與正方形面積;
(2)當(dāng)變化時(shí),求的最小值,并求出對(duì)應(yīng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù),求該函數(shù)的最大值和最小值以及取得最值時(shí)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

將圓心角為1200,面積為3的扇形,作為圓錐的側(cè)面,求圓錐的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)的最小正周期及圖象的對(duì)稱(chēng)軸方程式;
(II)當(dāng)a=2時(shí),在的條件下,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案