【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.

【答案】
(1)證明:∵PA=PD,Q為AD的中點(diǎn),∴PQ⊥AD,

又∵底面ABCD為菱形,∠BAD=60°,∴BQ⊥AD,

又PQ∩BQ=Q,∴AD⊥平面PQB,

又∵AD平面PAD,

∴平面PQB⊥平面PAD


(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,

∴PQ⊥平面ABCD,

以Q為坐標(biāo)原點(diǎn),分別以QA,QB,QP為x,y,z軸,

建立空間直角坐標(biāo)系,如圖

則Q(0,0,0),P(0,0, ),B(0, ,0),C(﹣2, ,0)

設(shè) ,0<λ<1,則M(﹣2λ, , ),

平面CBQ的一個(gè)法向量 =(0,0,1),

設(shè)平面MBQ的法向量為 =(x,y,z),

,得 =( ,0, ),

∵二面角M﹣BQ﹣C的大小為60°,

∴cos60°=|cos< >|=| |=

解得 ,∴ = ,

∴存在點(diǎn)M為線段PC靠近P的三等分點(diǎn)滿足題意.


【解析】(1)由已知得PQ⊥AD,BQ⊥AD,由此能證明平面PQB⊥平面PAD.(2)以Q為坐標(biāo)原點(diǎn),分別以QA,QB,QP為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出存在點(diǎn)M為線段PC靠近P的三等分點(diǎn)滿足題意.
【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex2(x2-3).

(1)求曲線yf(x)在點(diǎn)(0,f(0))處的切線方程;

(2)求函數(shù)yf(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對(duì)于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2, ),則f(4)的值等于
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是
說法錯(cuò)誤的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O過平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長線于點(diǎn)D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù)a1,a2,…,an的平均數(shù)為a,方差為s2,則數(shù)據(jù)2a1,2a2,…,2an的平均數(shù)和方差分別為(  )

A. a,s2 B. 2a,s2

C. 2a,2s2 D. 2a,4s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在R上是增函數(shù).若a=﹣f( ),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為( 。
A.a<b<c
B.b<a<c
C.c<b<a
D.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品有4件正品和2件次品混在了一起,現(xiàn)要把這2件次品找出來,為此每次隨機(jī)抽取1件進(jìn)行測(cè)試,測(cè)試后不放回,直至次品全部被找出為止.

(1)1次和第2次都抽到次品的概率;

(2)設(shè)所要測(cè)試的次數(shù)為隨機(jī)變量X,X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案