【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時(shí),有不等式f(x)≥ 恒成立,求實(shí)數(shù)k的取值范圍.

【答案】
(1)解:易知f(x)定義域?yàn)椋?,+∞), ,令f'(x)=0,得x=1.

當(dāng)0<x<1時(shí),f'(x)>0;當(dāng)x>1時(shí),f'(x)<0.

∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù)


(2)解:∵g(x)=1+lnx+mx, ,x∈(0,e],

①若m≥0,則g'(x)≥0,從而g(x)在(0,e]上是增函數(shù),∴g(x)max=g(e)=me+2≥0,不合題意.

②若m<0,則由g'(x)>0,即 ,若 ,g(x)在(0,e]上是增函數(shù),

由①知不合題意.

由g'(x)<0,即

從而g(x)在 上是增函數(shù),在 為減函數(shù),

,令ln( )=﹣3,所以m=﹣e3,

,∴所求的m=﹣e3


(3)解:∵x≥1時(shí), 恒成立,∴

,

恒大于0,

∴h(x)在[1,+∞)為增函數(shù),

∴h(x)min=h(1)=2,∴k≤2


【解析】(1)求出函數(shù)的定義域,函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),判斷導(dǎo)函數(shù)符號(hào),然后求解單調(diào)區(qū)間.(2)求出 ,x∈(0,e],通過①若m≥0,②若m<0,判斷函數(shù)的單調(diào)性,求解函數(shù)的最值,然后求m.(3)利用x≥1時(shí), 恒成立,分離變量,構(gòu)造函數(shù) ,利用函數(shù)的導(dǎo)數(shù),求解函數(shù)的最值,推出結(jié)果即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(  )

A. x>1,則2x>1”的否命題為真命題

B. cosβ=1,則sinβ=0”的逆命題是真命題

C. 若平面向量ab共線,則a,b方向相同的逆否命題為假命題

D. 命題x>1,則xa的逆命題為真命題,則a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且以原點(diǎn)為圓心,橢圓的焦距為直徑的圓與直線相切(為常數(shù)).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,若橢圓的左、右焦點(diǎn)分別為,過作直線與橢圓分別交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以長(zhǎng)方體的八個(gè)頂點(diǎn)中的兩點(diǎn)為起點(diǎn)和終點(diǎn)的向量中.

(1)單位向量共有多少個(gè)?

(2)試寫出模為的所有向量.

(3)試寫出與相等的所有向量.

(4)試寫出的相反向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:

則下列結(jié)論中正確的是 ( )

A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些

B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些

C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好

D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:

(1)求證:AB⊥CD;
(2)若M為AD的中點(diǎn),求二面角A﹣BM﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案