【題目】已知函數(shù)f(x)=ex+2(x2-3).
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)y=f(x)的極值.
【答案】(1)切線方程為3e2x+y+3e2=0;(2)極大值為f(-3)=,極小值為f(1)=-2e3.
【解析】
(1)由函數(shù),求得,得到的值,得到直線的斜率,進(jìn)而求解切線的方程;
(2)令,求得和,列出表格,即可得到函數(shù)的極值.
解:(1)函數(shù)f(x)=ex+2(x2-3),
則f′(x)=ex+2(x2+2x-3)=ex+2(x+3)(x-1),
故f′(0)=-3e2,又f(0)=-3e2,
故曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y+3e2=-3e2(x-0),即3e2x+y+3e2=0.
(2)令f′(x)=0,可得x=1或x=-3,
如下表:
x | (-∞,-3) | -3 | (-3,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
所以當(dāng)x=-3時(shí),函數(shù)取極大值,極大值為f(-3)=,當(dāng)x=1時(shí),函數(shù)取極小值,極小值為f(1)=-2e3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y2=2px(p>0)上一點(diǎn)P( ,m)到準(zhǔn)線的距離與到原點(diǎn)O的距離相等,拋物線的焦點(diǎn)為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(diǎn)(異于原點(diǎn)O),點(diǎn)A處的切線交x軸于點(diǎn)B,過A作準(zhǔn)線的垂線,垂足為點(diǎn)E.試判斷四邊形AEBF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為:(為參數(shù)).
(1)求圓和直線l的極坐標(biāo)方程;
(2)點(diǎn)的極坐標(biāo)為,直線l與圓相交于A,B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象( )
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于點(diǎn)( ,0)對(duì)稱
C.關(guān)于直線x=﹣ 對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A,B,C的對(duì)邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個(gè)公共點(diǎn),且a<1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com