【題目】在第十五次全國國民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(Ⅰ)填寫下面列聯(lián)表,并判斷是否有的把握認為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
(Ⅱ)從該地區(qū)居民城鎮(zhèn)的居民中,隨機抽取位居民參加一次閱讀交流活動,記這位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的分布列和期望.
附:,其中
【答案】(Ⅰ)見解析;(Ⅱ)見解析
【解析】
(Ⅰ)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與的大小,即可得出有的把握認為,經(jīng)常閱讀與居民居住地有關(guān)。
(Ⅱ)根據(jù)題意得的可能取值為0,1,2,3,4,利用二項分布公式求出相應的概率,即可得出的分布列和期望。
(Ⅰ)由題意得:
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
則 ,
所以,有的把握認為經(jīng)常閱讀與居民居住地有關(guān).
(Ⅱ)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取人,抽到經(jīng)常閱讀的人的概率是,且,所以的分布列為:
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;
男 | 女 | 合計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
合計 | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的焦點且斜率為的直線與拋物線交于兩點(在第一象限),以為直徑的圓分別與軸相切于兩點,則下列結(jié)論正確的是( )
A.拋物線的焦點坐標為B.
C.為拋物線上的動點,,則D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結(jié)束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:
(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;
(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;
(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,C、D是離心率為的橢圓的左、右頂點,、是該橢圓的左、右焦點, A、B是直線4上兩個動點,連接AD和BD,它們分別與橢圓交于點E、F兩點,且線段EF恰好過橢圓的左焦點. 當時,點E恰為線段AD的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:以AB為直徑的圓始終與直線EF相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】研究機構(gòu)對某校學生往返校時間的統(tǒng)計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間(單位:分鐘)有如下的統(tǒng)計資料:
到學校的距離(千米) | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花費的時間(分鐘) | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果統(tǒng)計資料表明與有線性相關(guān)關(guān)系,試求:
(1)判斷與是否有很強的線性相關(guān)性?
(相關(guān)系數(shù)的絕對值大于0.75時,認為兩個變量有很強的線性相關(guān)性,精確到0.01)
(2)求線性回歸方程(精確到0.01);
(3)將分鐘的時間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.
參考數(shù)據(jù):,,,,
,
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com