【題目】如圖,在直四棱柱中,底面是矩形,與交于點,.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)見解析.(2) .
【解析】
(1)根據(jù)線面垂直的判定定理,先證明平面,得到,進(jìn)而可證明結(jié)論成立;
(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,求出直線的方向向量、平面的一個法向量,求兩向量夾角的余弦值,即可得出結(jié)果.
(1)證明:因為四棱柱是直四棱柱,所以平面,則 .
又,,
所以平面,所以.
因為,,所以是正方形,所以.
又,所以平面.
(2)因為四棱柱是直四棱柱,底面是矩形,所以以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則,,
, ,
設(shè)平面的法向量為
由,,可得,
令,則,
設(shè)直線與平面所成的角為,
則.
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點是圓上異于的點, 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點,求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點在線段上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓N與圓M關(guān)于直線對稱.
(1)求圓N的方程.
(2)是否存在過點P的無窮多對互相垂直的直線和,使得被圓M截得的弦長與被圓N截得的弦長相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正數(shù)數(shù)列的前項和為,對于任意,是和的等差中項.
(1)求數(shù)列的通項公式;
(2)設(shè),是的前項和,是否存在常數(shù),對任意,使恒成立?若存在,求取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在第十五次全國國民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(Ⅰ)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
(Ⅱ)從該地區(qū)居民城鎮(zhèn)的居民中,隨機(jī)抽取位居民參加一次閱讀交流活動,記這位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機(jī)變量的分布列和期望.
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會影響第二段生產(chǎn)成品的等級,具體見下表:
第一段生產(chǎn)的半成品質(zhì)量指標(biāo) | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤分別是元、元、元.
(Ⅰ)以各組的中間值估計為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;
(Ⅱ)將頻率估計為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤;
(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價格是萬元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請你幫該公司作出決策,是否要購買該設(shè)備?說明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com