13.某市乘坐出租車(chē)的收費(fèi)辦法如表:
(1)不超過(guò)4千米的里程收費(fèi)12元;
(2)超過(guò)4千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi));
當(dāng)車(chē)程超過(guò)4千米時(shí),另收燃油附加費(fèi)1元.
相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中x(單位:千米)為行駛里程,y(單位:元)為所收費(fèi)用,用[x]表示不大于x的最大整數(shù),則圖中①處應(yīng)填( 。
A.y=2[x+$\frac{1}{2}$]+4B.y=2[x+$\frac{1}{2}$]+5C.y=2[x-$\frac{1}{2}$]+4D.y=2[x+$\frac{1}{2}$]+5

分析 根據(jù)已知中的收費(fèi)標(biāo)準(zhǔn),求當(dāng)x>4時(shí),所收費(fèi)用y的表達(dá)式,化簡(jiǎn)可得答案.

解答 解:由已知中,超過(guò)4千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi));
當(dāng)車(chē)程超過(guò)4千米時(shí),另收燃油附加費(fèi)1元.
可得:當(dāng)x>4時(shí),所收費(fèi)用y=12+[x-4+$\frac{1}{2}$]×2+1=2[x+$\frac{1}{2}$]+5,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)模型的選擇與應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為( 。
①(3x)′=3xlog3e;②${({{{log}_2}x})^′}=\frac{1}{xln2}$③(ex)′=ex;④${({\frac{1}{lnx}})^′}=x$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A,B兩地相距2km,從A,B兩處發(fā)出兩束探照燈正好射在上方一架飛機(jī)上(如圖),求飛機(jī)的高度h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿(mǎn)足,2x+4y=1,則x+2y的最大值是( 。
A.-2B.4C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,則(x-i)6的展開(kāi)式中含x4的項(xiàng)為( 。
A.-15x4B.15x4C.-20ix4D.20ix4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=ax2+bx-2lnx(a>0,b∈R),若對(duì)任意x>0都有f(x)≥f(2)成立,則(  )
A.lna>-b-1B.lna≥-b-1C.lna<-b-1D.lna≤-b-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且$\frac{{s}_{2016}}{2016}-\frac{{s}_{2015}}{2015}$=3,則a2016-a2014的值為( 。
A.-3B.0C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.雙曲線(xiàn)x2-$\frac{{y}^{2}}{3}$=1的兩條漸近線(xiàn)夾角是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ex(x+a)-x2+bx,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=x-2.
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案