分析 由正弦定理可得$\frac{2}{\frac{\sqrt{2}}{2}}=\frac{AC}{\frac{\sqrt{3}}{2}}$,求出AC,利用飛機的高度h=ACsin75°,即可得出結(jié)論.
解答 解:設(shè)飛機處為C,則C=45°,
由正弦定理可得$\frac{2}{\frac{\sqrt{2}}{2}}=\frac{AC}{\frac{\sqrt{3}}{2}}$,∴AC=$\sqrt{6}$,
∴飛機的高度h=ACsin75°,即$h=\frac{{3+\sqrt{3}}}{2}$.
點評 本題考查正弦定理,特殊角的三角函數(shù),考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4034 | B. | 4032 | C. | 4030 | D. | 4028 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 0 | C. | 2 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{e}{2}$ | B. | 2 | C. | 1 | D. | $\frac{e}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
(1)不超過4千米的里程收費12元; (2)超過4千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于0.5千米則不收費,若其大于或等于0.5千米則按1千米收費); 當車程超過4千米時,另收燃油附加費1元. |
A. | y=2[x+$\frac{1}{2}$]+4 | B. | y=2[x+$\frac{1}{2}$]+5 | C. | y=2[x-$\frac{1}{2}$]+4 | D. | y=2[x+$\frac{1}{2}$]+5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com