【題目】已知函數(shù)f(x)= .
(1)當(dāng)a=b=1時(shí),求滿足f(x)=3x的x的值;
(2)若函數(shù)f(x)是定義在R上的奇函數(shù),
①判斷f(x)在R的單調(diào)性并用定義法證明;
②當(dāng)x≠0時(shí),函數(shù)g(x)滿足f(x)[g(x)+2]= (3﹣x﹣3x),若對(duì)任意x∈R且x≠0,不等式g(2x)≥mg(x)﹣11恒成立,求實(shí)數(shù)m的最大值.
【答案】
(1)解:當(dāng)a=b=1時(shí),f(x)= .
若f(x)=3x,即3(3x)2+23x﹣1=0,
解得:3x= ,或3x=﹣1(舍去),
∴x=﹣1;
(2)解:若函數(shù)f(x)是定義在R上的奇函數(shù),
則f(﹣x)=﹣f(x),即 = ,
即(3a﹣b)(3x+3﹣x)+2ab﹣6=0,
解得: ,或 ,
經(jīng)檢驗(yàn), 滿足函數(shù)的定義域?yàn)镽,
∴f(x)= = .
①f(x)在R上單調(diào)遞減,理由如下:
∵任取x1<x2,
則 , ,
則f(x1)﹣f(x2)= ﹣ = >0,
即f(x1)>f(x2)
∴f(x)在R上是減函數(shù);
②∵當(dāng)x≠0時(shí),函數(shù)g(x)滿足f(x)[g(x)+2]= (3﹣x﹣3x),
∴g(x)=3x+3﹣x,(x≠0),
則g(2x)=32x+3﹣2x=(3x+3﹣x)2﹣2,
不等式g(2x)≥mg(x)﹣11恒成立,
即(3x+3﹣x)2﹣2≥m(3x+3﹣x)﹣11恒成立,
即m≤(3x+3﹣x)+ 恒成立,
僅t=3x+3﹣x,則t>2,
即m≤t+ ,t>2恒成立,
由對(duì)勾函數(shù)的圖象和性質(zhì)可得:當(dāng)t=3時(shí),t+ 取最小值6,
故m≤6,
即實(shí)數(shù)m的最大值為6.=
【解析】1、由題意可得,當(dāng)a=b=1時(shí)可將方程轉(zhuǎn)化為關(guān)于3x 的一元二次方程再由指數(shù)函數(shù)的自身的范圍3x >0, 即得x=-1.
2、先根據(jù)函數(shù)的奇偶性確定a、b的值:a=1 b=3再利用函數(shù)的單調(diào)性定義確定其單調(diào)性:在R上遞減。最后根據(jù)單調(diào)性轉(zhuǎn)化不等式 f(t2-2t)<f(2t2 -k)為t2 -2t>2t2-k即t2 +2t-k <0在R上有解,根據(jù)判別式大于零可得k的取值范圍。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為 (a為常數(shù),n∈N*).
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校對(duì)高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),全年級(jí)同學(xué)的成績(jī)?nèi)拷橛?0分與100分之間,將他們的成績(jī)數(shù)據(jù)繪制如圖所示的頻率分布直方圖.現(xiàn)從全體學(xué)生中,采用分層抽樣的方法抽取80名同學(xué)的試卷進(jìn)行分析,則從成績(jī)?cè)赱80,100]內(nèi)的學(xué)生中抽取的人數(shù)為( )
A.56
B.32
C.24
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個(gè)隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102 231 146 027 590 763 245 207 310 386 350 481 337 286 139
579 684 487 370 175 772 235 246 487 569 047 008 341 287 114
據(jù)此估計(jì),這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<a<1,函數(shù)f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求實(shí)數(shù)a的最大值;
(2)當(dāng)a= 時(shí),設(shè)g(x)=f(x)﹣3x+2m,若函數(shù)g(x)在(1,2)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: + =1(a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B,經(jīng)過點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : , 為 上一點(diǎn)且縱坐標(biāo)為 , , 是 上的兩個(gè)動(dòng)點(diǎn),且 .
(1)求過點(diǎn) ,且與 恰有一個(gè)公共點(diǎn)的直線 的方程;
(2)求證: 過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com