【題目】已知是直線上任意兩點,是外一點,若上一點滿足,則的值是________.
【答案】
【解析】
依題意知,cosθ+cos2θ=1,于是得cosθ=sin2θ,sin6θ=2cosθ﹣1,sin2θ+sin4θ+sin6θ=2cosθ,解方程cosθ+cos2θ=1,可求得cosθ,從而可得答案.
解:∵A、B、C三點共線,且cosθcos2θ,
∴cosθ+cos2θ=1,(三點共線的充要條件)
∴cos2θ=1﹣cosθ,
∴cosθ=1﹣cos2θ=sin2θ,
∴sin6θ=cos3θ=cosθ(1﹣sin2θ)=cosθ(1﹣cosθ)=cosθ﹣cos2θ=cosθ﹣(1﹣cosθ)=2cosθ﹣1,
∴sin2θ+sin4θ+sin6θ
=cosθ+cos2θ+2cosθ﹣1
=cosθ+1﹣cosθ+2cosθ﹣1
=2cosθ,
由cos2θ=1﹣cosθ得cosθ或cosθ1,舍去,
∴cosθ,
∴原式=2cosθ1,
故答案為:1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 y = x3 + x-2 在點 P0 處的切線平行于直線
4x-y-1=0,且點 P0 在第三象限,
⑴求P0的坐標;
⑵若直線, 且 l 也過切點P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點M,N,直線MN交x軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊甲、乙兩名運動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式解集為,求實數(shù)的值;
(2)在(1)的條件下,若不等式解集非空,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,,分別是橢圓的左,右焦點,點P是橢圓E上一點,滿足軸,.
(1)求橢圓E的離心率;
(2)過點的直線l與橢圓E交于兩點A,B,若在橢圓B上存在點Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】6月12日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個垃圾桶,分別標有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”,小明同學(xué)要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報紙(可回收物)全部投入到這四個桶中,若每種垃圾投放到每個桶中都是等可能的,那么隨機事件“4種垃圾中至少有2種投入正確的桶中”的概率是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com