【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=f(x)與的圖像關(guān)于直線y=x對稱,則的單調(diào)遞增區(qū)間為
A. B. (0,2) C. (2,4) D. (2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(-1,2)且與兩坐標軸的正半軸所圍成的三角形面積等于.
(1)求直線l的方程.
(2)求圓心在直線l上且經(jīng)過點M(2,1),N(4,-1)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上動點到點的距離與到直線的距離之比為,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動點,直線的方程為.
①設(shè)直線與圓交于不同兩點, ,求的取值范圍;
②求與動直線恒相切的定橢圓的方程;并探究:若是曲線: 上的動點,是否存在直線: 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角三角形中,,點分別在邊和上(與不重合),將沿翻折,變?yōu)?/span>,使頂點落在邊上(與不重合),設(shè).
(1)若,求線段的長度;
(2)用表示線段的長度;
(3)求線段長度的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:極坐標與參數(shù)方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標方程;
(2)當時,求直線l與圓O公共點的一個極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列存在量詞命題的真假:
(1)有些實數(shù)是無限不循環(huán)小數(shù);
(2)存在一個三角形不是等腰三角形;
(3)有些菱形是正方形;
(4)至少有一個整數(shù)是4的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)若對于任意的恒成立,求滿足條件的實數(shù)m的最小值M .
(3)對于(2)中的M,正數(shù)a,b滿足,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com