【題目】已知四棱錐的底面是梯形,,,,,在棱上且.
(1)證明:平面;
(2)若平面,異面直線與所成角的余弦值為,求二面角的余弦值.
【答案】(1)詳見(jiàn)解析(2)
【解析】
(1) 作交于點(diǎn),連接,證明四邊形為平行四邊形,可得,由線面平行的判定定理得到證明;(2)由異面直線與所成角可得,以所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,求出平面和平面EBD的法向量,然后利用法向量的數(shù)量積計(jì)算可得結(jié)果.
(1)證明:作交于點(diǎn),連接,
因?yàn)?/span>在棱上且,
所以.
又因?yàn)?/span>,,
所以,且,
所以四邊形為平行四邊形,
從而有.
又因?yàn)?/span>平面,平面,
所以平面.
(2)由(1)可知,即為異面直線與所成的角,
在直角三角形中,,
所以,.
以所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,
,,
平面的一個(gè)法向量,
設(shè)平面的法向量為,
由得
取,得.
所以,
因?yàn)槎娼?/span>為銳二面角,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在底面是邊長(zhǎng)為6的正方形的四棱錐P--ABCD中,點(diǎn)P在底面的射影H為正方形ABCD的中心,異面直線PB與AD所成角的正切值為,則四棱錐P--ABCD的內(nèi)切球與外接球的半徑之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AG交DE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.
證明:DE∥平面A1BC
求點(diǎn)B到平面A1EG的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是同一球面上的四點(diǎn),是邊長(zhǎng)為6的等邊三角形,若三棱錐體積的最大值為,則該球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長(zhǎng)度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線: (為參數(shù))的距離最短,寫(xiě)出點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點(diǎn).
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿足點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com