【題目】如圖,在菱形中,,平面,,是線段的中點(diǎn),.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見(jiàn)解析.

(2) .

【解析】試題分析:(1)設(shè)AC與BD的交點(diǎn)為O,連接MO可證明平面平面,從而可得平面平面,進(jìn)而可得平面;(2)取的中點(diǎn)為,連接,則,以為坐標(biāo)原點(diǎn),分別以,,軸,軸,軸建立空間直角坐標(biāo)系,求出直線的方向向量,利用向量垂直數(shù)量積為零解方程組求出平面的法向量,利用空間向量夾角余弦公式可得直線與平面所成角的正弦值.

試題解析:(1)設(shè)的交點(diǎn)為,連接.因?yàn)?/span>平面,所以平面.

因?yàn)?/span>是線段的中點(diǎn),所以的中位線,所以.

,所以平面

所以,平面平面.

平面.

(2)取的中點(diǎn)為,連接,則.

為坐標(biāo)原點(diǎn),分別以,軸,軸,軸建立空間直角坐標(biāo)系.取,則,,.

所以,.

設(shè)平面的法向量,則,即,解得.

可取法向量.

,則

故直線與平面所成角的正弦值為.

【方法點(diǎn)晴】本題主要考查線面平行的判定定理、直線和平面成的角的定義及求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)營(yíng)的某種消費(fèi)品的進(jìn)價(jià)為每件14元,月銷售量(百件)與每件的銷售價(jià)格(元)的關(guān)系如圖所示,每月各種開(kāi)支2 000元.

(1)寫(xiě)出月銷售量(百件)關(guān)于每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.

(2)寫(xiě)出月利潤(rùn)(元)與每件的銷售價(jià)格(元)的函數(shù)關(guān)系式.

(3)當(dāng)該消費(fèi)品每件的銷售價(jià)格為多少元時(shí),月利潤(rùn)最大?并求出最大月利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過(guò)點(diǎn),其離心率為

(1)求橢圓的方程;

(2)已知是橢圓上一點(diǎn),,為橢圓的焦點(diǎn),且,求點(diǎn)軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,分別為橢圓的左、右焦點(diǎn).動(dòng)直線過(guò)點(diǎn),且與橢圓相交于,兩點(diǎn)(直線軸不重合).

(1)若點(diǎn)的坐標(biāo)為,求點(diǎn)坐標(biāo);

(2)點(diǎn),設(shè)直線,的斜率分別為,求證:

(3)求面積最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 , 其左右焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為 的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)記的面積為, 為原點(diǎn)的面積為,試問(wèn):是否存在直線使得說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若過(guò)點(diǎn)P1,t)存在3條直線與曲線相切,求t的取值范圍__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,OBD中點(diǎn),AB=AD=2,.

(1)求證:AO⊥平面BCD;

(2)求點(diǎn)D到平面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC—A1B1C1中,側(cè)棱與底面垂直,∠BAC90°,ABAC=AA12,點(diǎn)M,N分別為A1B和B1C1的中點(diǎn).

(1)求異面直線A1B與NC所成角的余弦值;

(2)求A1B與平面NMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是梯形,,,,,在棱上且.

(1)證明:平面;

(2)若平面,異面直線所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案