已知二次函數(shù)滿足:①在時有極值;②圖像過點,且在該點處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

(1);(2)函數(shù)的單調(diào)遞增區(qū)間為(-1,0),(1,+∞).

解析試題分析:(1)根據(jù)題意首先設(shè)出該二次函數(shù)的解析式,然后根據(jù)題意列出方程組即可求出其解析式;
(2)直接運用導數(shù)研究函數(shù)的單調(diào)性及單調(diào)區(qū)間.
試題解析:(1)設(shè),則. 
由題設(shè)可得:解得 
所以
(2)
列表:

x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)


0
+
0

0
+


 

 

 

 
由表可得:函數(shù)的單調(diào)遞增區(qū)間為(-1,0),(1,+∞).  
考點:導數(shù)的幾何意義;導數(shù)在研究函數(shù)的單調(diào)性中的應用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若,是否存在k和m,使得 ,,若存在,求出k和m的值,若不存在,說明理由
(Ⅱ)設(shè) 有兩個零點 ,且 成等差數(shù)列, 是 G (x)的導函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)內(nèi)有極值.
(1)求實數(shù)的取值范圍;
(2)若求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導函數(shù)為f’(x),若存在唯一的實數(shù)x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,
(1)當時,求的單調(diào)區(qū)間
(2)若上是遞減的,求實數(shù)的取值范圍; 
(3)是否存在實數(shù),使的極大值為3?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實數(shù)的值;
(3)設(shè)有兩個極值點、(),求實數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(1)求的單調(diào)區(qū)間;(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè) 圓軸正半軸的交點為,與曲線的交點為,直線軸的交點為
(1)用表示
(2)若數(shù)列滿足 
(1)求常數(shù)的值,使得數(shù)列成等比數(shù)列;
(2)比較的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案