【題目】已知函數(shù).
(1)若不等式的解集為,求a的值;
(2)在(1)的條件下,若存在,使,求t的取值范圍.
【答案】(1)2;(2).
【解析】
(1)求得不等式f(x)<6的解集為a﹣3≤x≤3,再根據(jù)不等式f(x)<6的解集為(﹣1,3),可得a﹣3=﹣1,由此求得a的范圍;
(2)令g(x)=f(x)+f(﹣x)=|2x﹣2|+|2x+2|+4,求出g(x)的最小值,可得t的范圍.
(1)∵函數(shù)f(x)=|2x﹣a|+a,
不等式f(x)<6的解集為(﹣1,3),
∴|2x﹣a|<6﹣a 的解集為(﹣1,3),
由|2x﹣a|<6﹣a,可得a﹣6<2x+a<6﹣a,求得a﹣3≤x≤3,
故有a﹣3=﹣1,a=2.
(2)在(1)的條件下,f(x)=|2x﹣2|+2,
令g(x)=f(x)+f(﹣x)=|2x﹣2|+|2x+2|+4=
故g(x)的最小值為8,
故使f(x)≤t﹣f(﹣x)有解的實數(shù)t的范圍為[8,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)記,試判斷函數(shù)的極值點的情況;
(Ⅱ)若有且僅有兩個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為,過任作一條與兩條坐標軸都不垂直的直線,與橢圓交于兩點,且的周長為8,當直線的斜率為時, 與軸垂直.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在定點,總能使平分?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,底面為等邊三角形,分別是的中點.
(1)證明:平面平面;
(2)如何在上找一點,使平面并說明理由;
(3)若,對于(2)中的點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).
(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;
(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面ABCD是矩形,PA⊥平面ABCD,AP=2,AB=2,AD=4,且E、F分別是PB、PC的中點。
(1)求三棱錐的體積;
(2)求直線EC與平面PCD所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海途安型號出租車價格規(guī)定:起步費元,可行千米;千米以后按每千米按元計價,可再行千米;以后每千米都按元計價。假如忽略因交通擁擠而等待的時間.
請建立車費(元)和行車里程(千米)之間的函數(shù)關(guān)系式;
注意到上海出租車的計價系統(tǒng)是以元為單位計價的,如:小明乘坐途安型號出租車從華師大二附中本部到浦東實驗學(xué)校走路線一(路線一總長千米)須付車費元,走路線二(路線二總長千米)也須付車費元.將上述函數(shù)解析式進行修正(符號表示不大于的最大整數(shù),符號表示不小于的最小整數(shù));并求小明乘坐途安型號出租車從華師大二附中本部到閔行分校須付車費多少元?(注:兩校區(qū)路線長千米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點為、.
(1)求以為焦點,原點為頂點的拋物線方程;
(2)若橢圓上點滿足,求的縱坐標;
(3)設(shè),若橢圓上存在兩個不同點、滿足,證明:直線過定點,并求該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com