已知雙曲線(xiàn)與拋物線(xiàn)有一個(gè)公共的焦點(diǎn),且兩曲線(xiàn)的一個(gè)交點(diǎn)為,若,則雙曲線(xiàn)的漸近線(xiàn)方程為               .

解析試題分析:由拋物線(xiàn)y2=8x得出其焦點(diǎn)坐標(biāo),由|PF|=5結(jié)合拋物線(xiàn)的定義得出點(diǎn)P的坐標(biāo),從而得到雙曲線(xiàn)的關(guān)于a,b 的方程,求出a,b的值,進(jìn)而求出雙曲線(xiàn)的漸近線(xiàn)方程。解:拋物線(xiàn)y2=8x得出其焦點(diǎn)坐標(biāo)(2,0)故雙曲線(xiàn)的c=2,又|PF|=5,設(shè)P(m,n),則|PF|=m+2∴m+2=5,m=3,∴點(diǎn)P的坐標(biāo)(3,± )∴a 2+b 2=4,解得:a 2=1,b 2=3則雙曲線(xiàn)的漸近線(xiàn)方程為故答案為
考點(diǎn):拋物線(xiàn)的簡(jiǎn)單性質(zhì),雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的簡(jiǎn)單性質(zhì),雙曲線(xiàn)的簡(jiǎn)單性質(zhì),拋物線(xiàn)的定義等.解答的關(guān)鍵是學(xué)生對(duì)圓錐曲線(xiàn)基礎(chǔ)知識(shí)掌握的熟練程度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在拋物線(xiàn)上有一點(diǎn),若它到點(diǎn)的距離與它到拋物線(xiàn)的焦點(diǎn)的距離之和最小,則點(diǎn)的坐標(biāo)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知F1,F(xiàn)2是橢圓  (a>b>0)的左,右焦點(diǎn),點(diǎn)P是橢圓在y軸右側(cè)上的點(diǎn),且∠F1PF2,記線(xiàn)段PF1與y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1∶2,則該橢圓的離心率等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)拋物線(xiàn)的頂點(diǎn)在原點(diǎn),準(zhǔn)線(xiàn)方程為,則拋物線(xiàn)的標(biāo)準(zhǔn)方程是_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)拋物線(xiàn)的頂點(diǎn)在原點(diǎn),準(zhǔn)線(xiàn)方程為,則拋物線(xiàn)的標(biāo)準(zhǔn)方程是______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

點(diǎn)在曲線(xiàn)上,點(diǎn)Q在曲線(xiàn)上,點(diǎn)R在曲線(xiàn)上,則最大值是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn):上的點(diǎn)到直線(xiàn)的距離為,則的最大值為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

給出下列命題:
①拋物線(xiàn)x=的準(zhǔn)線(xiàn)方程是x=1;
②若x∈R,則的最小值是2;
 ;
④若ξ~N(3,)且P(0≤ξ≤3)=0.4,則P(ξ≥6)=0.1 。
其中正確的是(填序號(hào))        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知有公共焦點(diǎn)的橢圓與雙曲線(xiàn)中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為,,且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△是以為底邊的等腰三角形.若=10,雙曲線(xiàn)的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是     

查看答案和解析>>

同步練習(xí)冊(cè)答案