【題目】已知函數 .
(1)若在 處導數相等,證明: ;
(2)若對于任意 ,直線 與曲線都有唯一公共點,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.
(1)將l表示成θ的函數,并確定θ的取值范圍;
(2)求l的最小值及此時的值;
(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢驗訓練情況,武警某支隊于近期舉辦了一場展示活動,其中男隊員12人,女隊員18人,測試結果如莖葉圖所示(單位:分).若成績不低于175分者授予“優(yōu)秀警員”稱號,其他隊員則給予“優(yōu)秀陪練員”稱號.
(1)若用分層抽樣的方法從“優(yōu)秀警員”和“優(yōu)秀陪練員”中共提取10人,然后再從這10人中選4人,那么至少有1人是“優(yōu)秀警員”的概率是多少?
(2)若所有“優(yōu)秀警員”中選3名代表,用表示所選女“優(yōu)秀警員”的人數,試求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點( )
A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產,以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱有5kg),某采購商打算訂購一批橙子銷往省外,并從采購的這批橙子中隨機抽取100箱,利用橙子的等級分類標準得到的數據如下表:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
箱數 | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機抽取4箱,求恰好抽到2箱是一級品的概率:
(2)利用樣本估計總體,莊園老板提出兩種購銷方案供采購商參考:
方案一:不分等級賣出,價格為27元/kg;
方案二:分等級賣出,分等級的橙子價格如下:
等級 | 珍品 | 特級 | 優(yōu)級 | 一級 |
售價(元/kg) | 36 | 30 | 24 | 18 |
從采購商的角度考慮,應該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再從抽取的10箱中隨機抽取3箱,X表示抽取的是珍品等級,求x的分布列及數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線: 的焦點為圓的圓心.
(1)求拋物線的標準方程;
(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.
【答案】(1);(2)8.
【解析】試題分析:(1)先求圓心得焦點,根據焦點得拋物線方程(2)先根據點斜式得直線方程,與拋物線聯立方程組,利用韋達定理以及弦長公式得弦長.
試題解析:(1)圓的標準方程為,圓心坐標為,
即焦點坐標為,得到拋物線的方程:
(2)直線: ,聯立,得到
弦長
【題型】解答題
【結束】
19
【題目】已知函數在點處的切線方程為.
(1)求函數的解析式;
(2)求函數的單調區(qū)間和極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數據分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com