【題目】已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)MN分別在邊.設(shè),的面積為S.

1)將l表示成θ的函數(shù),并確定θ的取值范圍;

2)求l的最小值及此時(shí)的值;

3)問(wèn)當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.

【答案】12,的最小值為.3時(shí),面積取最小值為

【解析】

1,利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;

2)由(1,若求l的最小值即求的最大值,即可求的最大值,設(shè)為,,,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進(jìn)而求解;

3)由題,,,設(shè),,利用導(dǎo)函數(shù)求得的最大值,即可求得的最小值.

解:(1,

.

因?yàn)?/span>,所以,,

所以,

,,則,所以,

所以

2)記,

,

設(shè),,則,

,則,

,,

當(dāng)時(shí),;當(dāng)時(shí),,

所以上單調(diào)遞增,在上單調(diào)遞減,

故當(dāng)時(shí)取最小值,此時(shí),的最小值為.

3的面積,

所以,設(shè),則,

設(shè),,,,

所以當(dāng)時(shí),;當(dāng)時(shí),,

所以上單調(diào)遞增,在上單調(diào)遞減,

故當(dāng),即時(shí),面積取最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種擲骰子走跳棋的游戲:棋盤(pán)上標(biāo)有第0站、第1站、第2站、、第100站,共101站,設(shè)棋子跳到第n站的概率為,一枚棋子開(kāi)始在第0站,棋手每擲一次骰子,棋子向前跳動(dòng)一次.若擲出奇數(shù)點(diǎn),棋子向前跳一站;若擲出偶數(shù)點(diǎn),棋子向前跳兩站,直到棋子跳到第99(獲勝)或第100(失敗)時(shí),游戲結(jié)束(骰子是用一種均勻材料做成的立方體形狀的游戲玩具,它的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1,23,4,5,6)

(1),,并根據(jù)棋子跳到第n站的情況,試用表示

(2)求證:為等比數(shù)列;

(3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),拋物線的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,

(1)證明:;

(2)已知四邊形ABCD是等腰梯形,且,求五面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

1)若,求直線以及曲線的直角坐標(biāo)方程;

2)若直線與曲線交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.

1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.

2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.

i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);

ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.

可能用到的參考數(shù)據(jù):取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若直線與曲線相切于點(diǎn),證明:;

(Ⅱ)若不等式有且僅有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過(guò)點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線, 的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若 處導(dǎo)數(shù)相等,證明: ;

(2)若對(duì)于任意 ,直線 與曲線都有唯一公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案