【題目】已知拋物線 的焦點為圓的圓心.

(1)求拋物線的標準方程;

(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.

【答案】(1);(2)8.

【解析】試題分析:(1)先求圓心得焦點,根據(jù)焦點得拋物線方程(2)先根據(jù)點斜式得直線方程,與拋物線聯(lián)立方程組,利用韋達定理以及弦長公式得弦長.

試題解析:(1)圓的標準方程為,圓心坐標為

即焦點坐標為,得到拋物線的方程:

(2)直線 ,聯(lián)立,得到

弦長

型】解答
束】
19

【題目】已知函數(shù)在點處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間和極值.

【答案】(1);(2)見解析.

【解析】試題分析:(1)根據(jù)導數(shù)幾何意義得,再與聯(lián)立方程組解得 (2)先函數(shù)導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,進而確定單調(diào)區(qū)間和極值

試題解析:(1),切線為,即斜率,縱坐標

, ,解得,

解析式

(2) ,定義域為

得到單增,在單減,在單增

極大值,極小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的面積為且與軸、軸分別交于兩點.

1)求圓的方程;

(2)若直線與線段相交,求實數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))在其定義域內(nèi)有兩個不同的極值點.

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)記兩個極值點分別為, ),求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的左右焦點分別為、, 右支上的點,線段的左支于點,若是邊長等于的等邊三角形,則雙曲線的標準方程為( )

A. B. C. D.

【答案】A

【解析】

即雙曲線的標準方程為,選A.

型】單選題
束】
11

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組中的兩個函數(shù)是同一函數(shù)的有幾組?

(1)y1=,y2=x–5; (2)y1=,y2=

(3)fx)=x,gx)= (4)fx)=,Fx)=x

A. 0組 B. 1組 C. 2組 D. 組3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+cx(a>0),其圖象在點(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導函數(shù)
f′(x)的最小值為﹣12.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為D,且同時滿足以下條件:

在D上是單調(diào)遞增或單調(diào)遞減函數(shù);

存在閉區(qū)間 D(其中),使得當時,的取值集合也是.那么,我們稱函數(shù) ()是閉函數(shù).

(1)判斷是不是閉函數(shù)?若是,找出條件中的區(qū)間;若不是,說明理由.

(2)若是閉函數(shù),求實數(shù)的取值范圍.

注:本題求解中涉及的函數(shù)單調(diào)性不用證明,直接指出是增函數(shù)還是減函數(shù)即可

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O1和圓O2的極坐標方程分別為ρ=2,
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過兩圓交點的直線的極坐標方程.

查看答案和解析>>

同步練習冊答案