【題目】以下是我們常見的空間幾何體.

1 2 3 4 5 6 7 8 9)(10

11

1)以上幾何體中哪些是棱柱?

2)一個幾何體為棱柱的充要條件是什么?

3)如何求以上幾何體的表面積?

【答案】1)(2)(4)(6)(7).

2)兩個面互相平行,且多面體的頂點(diǎn)都在這兩個面上,其余各面都是平行四邊形.

3)各個面的面積之和.

【解析】

1)根據(jù)棱柱的定義進(jìn)行篩選,即可得出結(jié)論;

2)根據(jù)棱柱側(cè)棱平行且相等,頂點(diǎn)都在平行平面上,即可得出結(jié)論;

3)根據(jù)表面積的定義,即可求解.

1)根據(jù)棱柱的定義:有兩個面互相平行,其余各面都是四邊形,

并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的

多面體為棱柱.可知(1)(2)(4)(6)(7)為棱柱;

2)一個幾何體為棱柱的充要條件是:兩個面互相平行,

且多面體的頂點(diǎn)都在這兩個面上,其余各面都是平行四邊形.

3)求解幾何體的表面積即求各個面的面積之和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是平行四邊形,的兩個三等分點(diǎn).

(1)求證平面;

(2)若平面平面,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),圖象上兩相鄰對稱軸之間的距離為_______________;

)在①的一條對稱軸;②的一個對稱中心;③的圖象經(jīng)過點(diǎn)這三個條件中任選一個補(bǔ)充在上面空白橫線中,然后確定函數(shù)的解析式;

)若動直線的圖象分別交于、兩點(diǎn),求線段長度的最大值及此時的值.

注:如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人練習(xí)罰球,每人練習(xí)6組,每組罰球20個,命中個數(shù)莖葉圖如下:

(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);

(2)通過計算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面半徑為6的圓柱內(nèi),有兩個半徑也為6的球面,兩球的球心距為13,若作一個平面與兩個球都相切,且與圓柱面相交成一橢圓,則橢圓的長軸長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:①對于任意的都有成立;②當(dāng),;;則不等式的解集為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某大河的一段支流,岸線近似滿足寬度為7為河中的一個半徑為2的小島,小鎮(zhèn)位于岸線上,且滿足岸線現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的通道(圖中粗線部分折線段,右側(cè)),為保護(hù)小島,段設(shè)計成與圓相切,設(shè)

(1)試將通道的長表示成的函數(shù),并指出其定義域.

(2)求通道的最短長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱錐的底面正方形邊長是3是在底面上的射影,,上的一點(diǎn),過且與、都平行的截面為五邊形

1)在圖中作出截面,并寫出作圖過程;

2)求該截面面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年春節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使一些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對這種現(xiàn)象,專家對人們的用餐地點(diǎn)及性別作出調(diào)查,得到的情況如下表所示:

在家用餐

在餐館用餐

總計

男性

30

女性

40

總計

50

100

1)完成上述列聯(lián)表;

2)根據(jù)表中的數(shù)據(jù),試通過計算判斷是否有的把握說明用餐地點(diǎn)與性別有關(guān)?

參考公式及數(shù)據(jù):,其中.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案