【題目】已知函數(shù)f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)對任意都有恒成立,求實(shí)數(shù)a的取值范圍;

(3)證明:對一切,都有成立.

【答案】(1) (2)( (3)見證明

【解析】

1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,利用導(dǎo)數(shù)求對應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個函數(shù),再利用兩函數(shù)最值關(guān)系進(jìn)行證明.

(1)

當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=

(2)因?yàn)?/span>所以問題等價于上恒成立,

,

因?yàn)?/span>,

函數(shù)f(x)在(0,1)上單調(diào)遞減;

函數(shù)f(x)在(1,+)上單調(diào)遞增;

,

即實(shí)數(shù)a的取值范圍為(.

(3)問題等價于證明

由(1)知道

,令

函數(shù)在(0,1)上單調(diào)遞增;

函數(shù)在(1,+)上單調(diào)遞減;

所以{,

因此,因?yàn)閮蓚等號不能同時取得,所以

即對一切,都有成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:為參數(shù)),直線l與曲線C分別交于MN兩點(diǎn).

1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有7個點(diǎn)每三點(diǎn)的兩兩連線都組成一個不等邊三角形求證一定可以找到4對三角形,使每對三角形的公共邊既是其中一個三角形的最長邊又是另一個三角形的最短邊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,2,…,2011中最少應(yīng)選出多少個不同的數(shù),才能保證選出的數(shù)中必存在三個不同的數(shù)構(gòu)成一個三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將 , 三件禮物隨機(jī)分成兩個包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費(fèi)用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名射擊運(yùn)動員分別對一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:

(1)2人都射中目標(biāo)的概率;

(2)2人中恰有1人射中目標(biāo)的概率;

(3)2人至少有1人射中目標(biāo)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)當(dāng)a>1,求使f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時,證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊答案