從裝有大小相同的2個(gè)紅球和6個(gè)白球的袋子中,每摸出2個(gè)球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(1)求第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球概率;
(2)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望

(1);(2)的分布列為


1
2
3
4





解析試題分析:(1)由題意知,袋子中共有8個(gè)球,記“第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球”為事件A,則根據(jù)古典概型計(jì)算公式,得.
(2)由題意知,每次試驗(yàn)中不放回地摸出兩個(gè)球,直到摸出的球中有紅球,因?yàn)榇兄挥袃蓚(gè)紅球,所以最多需要進(jìn)行四次試驗(yàn),第一次試驗(yàn)的結(jié)果可能有“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,第二次試驗(yàn)要在第一次試驗(yàn)沒(méi)有出紅球情況下進(jìn)行,則袋中剩下4個(gè)白球和2個(gè)紅球,結(jié)果可能為“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,同理第三次試驗(yàn)要在前兩次沒(méi)有出現(xiàn)紅球下進(jìn)行,則袋中剩下2個(gè)白球和2個(gè)紅球,結(jié)果能為“一個(gè)紅球一個(gè)白球”或“兩個(gè)紅球”,第四次試驗(yàn)要在前三次試驗(yàn)沒(méi)有出現(xiàn)紅球下進(jìn)行,則袋中只剩下2個(gè)紅球,結(jié)果為“兩個(gè)紅球”,所以的值為1、2、3、4,根據(jù)古典概型的計(jì)算公式,得,,,,從而可列出的分布列,并求出其數(shù)學(xué)期望.
試題解析:(1)
(2)由題意可知的值分別為1、2、3、4,則,
所以的分布列為

的數(shù)學(xué)期望.
考點(diǎn):1.古典概率;2.隨機(jī)變量的分布列、數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)字-1,0,1,2.稱“從盒中隨機(jī)抽取一張,記下卡片上的數(shù)字后并放回”為一次試驗(yàn)(設(shè)每次試驗(yàn)的結(jié)果互不影響).
(1)在一次試驗(yàn)中,求卡片上的數(shù)字為正數(shù)的概率;
(2)在四次試驗(yàn)中,求至少有兩次卡片上的數(shù)字都為正數(shù)的概率;
(3)在兩次試驗(yàn)中,記卡片上的數(shù)字分別為X,η,試求隨機(jī)變量XX·η的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)中任取四個(gè)點(diǎn),當(dāng)四點(diǎn)共面時(shí),=0,當(dāng)四點(diǎn)不共面時(shí),的值為四點(diǎn)組成的四面體的體積.
(1)求概率P(=0);
(2)求的分布列,并求其數(shù)學(xué)期望E ().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了了解某市工廠開展群眾體育活動(dòng)的情況,擬采用分層抽樣的方法從三個(gè)區(qū)中抽取6個(gè)工廠進(jìn)行調(diào)查.已知區(qū)中分別有27,18,9個(gè)工廠.
(Ⅰ)求從區(qū)中應(yīng)分別抽取的工廠個(gè)數(shù);
(Ⅱ)若從抽得的6個(gè)工廠中隨機(jī)地抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)工廠中至少有1個(gè)來(lái)自區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

長(zhǎng)沙市某中學(xué)在每年的11月份都會(huì)舉行“社團(tuán)文化節(jié)”,開幕式當(dāng)天組織舉行大型的文藝表演,同時(shí)邀請(qǐng)36名不同社團(tuán)的社長(zhǎng)進(jìn)行才藝展示.其中有的社長(zhǎng)是高中學(xué)生,的社長(zhǎng)是初中學(xué)生,高中社長(zhǎng)中有是高一學(xué)生,初中社長(zhǎng)中有是初二學(xué)生.
(1)若校園電視臺(tái)記者隨機(jī)采訪3位社長(zhǎng),求恰有1人是高一學(xué)生且至少有1人是初中學(xué)生的概率;
(2)若校園電視臺(tái)記者隨機(jī)采訪3位初中學(xué)生社長(zhǎng),設(shè)初二學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了調(diào)查學(xué)生的視力情況,隨機(jī)抽查了一部分學(xué)生的視力,將調(diào)查結(jié)果分組,分組區(qū)間為,經(jīng)過(guò)數(shù)據(jù)處理,得到如下頻率分布表

分組
 
頻數(shù)
 
頻率
 

 
3
 
0.06
 

 
6
 
0.12
 

 
25
 

 

 

 

 

 
2
 
0.04
 
合計(jì)
 

 
1.00
 
(Ⅰ)求頻率分布表中未知量,,,的值
(Ⅱ)從樣本中視力在的所有同學(xué)中隨機(jī)抽取兩人,求兩人視力差的絕對(duì)值低于的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.

(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)有關(guān)于x的一元二次方程
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目個(gè)數(shù)分別占總數(shù)的,,現(xiàn)在3名工人獨(dú)立地從中任意一個(gè)項(xiàng)目參與建設(shè).
(1)求他們選擇的項(xiàng)目所屬類別互不相同的概率.
(2)記X為3人中選擇的項(xiàng)目所屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案