【題目】甲、乙兩人的各科成績(jī)?nèi)鐖D中的莖葉圖所示,則下列說(shuō)法不正確的是(  )

A. 甲、乙兩人的各科平均分相同

B. 甲各科成績(jī)的中位數(shù)是83,乙各科成績(jī)的中位數(shù)是85

C. 甲各科成績(jī)比乙各科成績(jī)穩(wěn)定

D. 甲各科成績(jī)的眾數(shù)是89,乙各科成績(jī)的眾數(shù)為87

【答案】D

【解析】

本題考查統(tǒng)計(jì)分析,莖葉圖,特征數(shù):平均數(shù),中位數(shù),眾數(shù),方差.

根據(jù)莖葉圖計(jì)算,

;;甲、乙兩人的各科平均分相同;A正確;

甲的成績(jī)按從小到大順序排第5個(gè)是83,乙的成績(jī)按從小到大順序排第5個(gè)是85;所以甲的中位數(shù)是83,乙的中位數(shù)是85 B正確;

;

,甲各科成績(jī)比乙各科成績(jī)穩(wěn)定;C正確;

在統(tǒng)計(jì)數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)數(shù)眾數(shù);甲的眾數(shù)是83,乙的眾數(shù)為98D錯(cuò)誤;

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn), 的中點(diǎn),且為正三角形.

)求證: 平面

)若, ,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)分別是Δ的邊的中點(diǎn)連接.現(xiàn)將沿折疊至Δ的位置,連接.記平面 與平面 的交線為 ,二面角大小為.

(1)證明:

(2)證明:

(3)求平面與平面 所成銳二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形AMNC為等腰梯形,△ABC為直角三角形,平面AMNC與平面ABC垂直,AB=BC,AM=CN,點(diǎn)O、D、E分別是AC、MN、AB的中點(diǎn).過(guò)點(diǎn)E作平行于平面AMNC的截面分別交BD、BC于點(diǎn)F、G,H是FG的中點(diǎn).
(Ⅰ)證明:OB⊥EH;
(Ⅱ)若直線BH與平面EFG所成的角的正弦值為 ,求二面角D﹣AC﹣H的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且,則 的值(

A. 恒為正數(shù) B. 恒等于零

C. 恒為負(fù)數(shù) D. 可能大于零,也可能小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 平面 , , 分別為的中點(diǎn), 為側(cè)棱上的動(dòng)點(diǎn).

)求證:平面平面

)若為線段的中點(diǎn),求證: 平面

)試判斷直線與平面是否能夠垂直.若能垂直,求的值,若不能垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x﹣a|,x∈R.
(Ⅰ)求證:當(dāng)a=﹣1時(shí),不等式lnf(x)>1成立;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類似于十進(jìn)制中的逢10進(jìn)1,十二進(jìn)制的進(jìn)位原則是逢12進(jìn)1,采用數(shù)字0,1,2,…,9和字母M,N作為計(jì)數(shù)符號(hào),這些符號(hào)與十進(jìn)制的數(shù)字對(duì)應(yīng)關(guān)系如下表:

十二進(jìn)制

0

1

2

3

4

5

6

7

8

9

M

N

十進(jìn)制

0

1

2

3

4

5

6

7

8

9

10

11

例如,因?yàn)?63=3×122+10×12+11,所以十進(jìn)制中的563在十二進(jìn)制中被表示為3MN(12).那么十進(jìn)制中的2008在十二進(jìn)制中被表示為(  )

A. 11N4(12) B. 1N25(12) C. 12N4(12) D. 1N24(12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左頂點(diǎn)為(﹣2,0),離心率為

(1)求橢圓C的方程;
(2)已知直線l過(guò)點(diǎn)S(4,0),與橢圓C交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P′,P′與Q兩點(diǎn)的連線交x軸于點(diǎn)T,當(dāng)△PQT的面積最大時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案