【題目】如圖,已知與圓相切于點,經(jīng)過點的割線交圓于點,的平分線分別交于點.
(1)證明:;
(2)若,求的值.
【答案】(1)證明見解析;(2)
【解析】
試題分析:(1)要證兩角相等,與已知條件“是角平分線”聯(lián)系,這兩個分別都可以作為一個三角形的外角,∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,而由角平分線有,∠APD=∠CPE,由切線的性質(zhì)有∠BAP=∠C,因此結(jié)論得這兩點;(2)由切線性質(zhì)可得APC∽BPA,這樣會出現(xiàn)線段的比值,再由及(1)的證明知中,,從而求得.
試題解析:(1)∵PA是切線,AB是弦,∴∠BAP=∠C
又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE.
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE.
∴∠ADE=∠AED
(2)由(1)知∠BAP=∠C,又∠APC=∠BPA,∴APC∽BPA, ,
∵AC=AP, ∠BAP=∠C=∠APC,
由三角形的內(nèi)角和定理知:∠C+∠APC+∠PAC=180,
∵BC是圓O的直徑,∴∠BAC=90,∴∠C+∠APC+∠BAP=90,∴∠C=∠APC=∠BAP=30,
在RtABC中,,∴
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)字序列:3,-2,-4,0,5,13,6,-32,-18,9,-20.下面是從該序列中搜索所有負數(shù)的一個算法,請補全步驟:
S1 輸入實數(shù)a;
S2 _____;
S3 輸出a,轉(zhuǎn)S1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線和圓.有以下幾個結(jié)論:
①直線的傾斜角不是鈍角;
②直線必過第一、三、四象限;
③直線能將圓分割成弧長的比值為的兩段圓;
④直線與圓相交的最大弦長為.
其中正確的是________________.(寫出所有正確說法的番號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某村計劃建造一個室內(nèi)面積為800的矩形蔬菜溫室.在溫室內(nèi),沿左右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地.當矩形溫室的邊長各為多少時?蔬菜的種植面積最大,最大種植面積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155和195之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(1)求第七組的頻率;
(2)估計該校的800名男生的身高的眾數(shù)以及身高在180以上(含180)的人數(shù);
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,事件,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題中:
①在回歸分析中, 可用相關(guān)指數(shù)的值判斷的擬合效果,越大,模型的擬合效果越好;
②兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近;
③若數(shù)據(jù)的方差為,則的方差為;
④對分類變量與的隨機變量的觀測值來說, 越小,判斷“與有關(guān)系”的把握程度越大.
其中真命題的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為.
(1)求橢圓的方程;
(2)斜率為的直線過橢圓的右焦點,且與橢圓交與兩點,過線段的中點與垂直的直線交直線于點,若為等邊三角形,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com