圓
的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖).
(1)求點P的坐標;
(2)焦點在x軸上的橢圓C過點P,且與直線
交于A,B兩點,若
的面積為2,求C的標準方程.
(1)
;(2)
試題分析:(1)首先設切點
,由圓的切線的性質(zhì),根據(jù)半徑
的斜率可求切線斜率,進而可表示切線方程為
,建立目標函數(shù)
.故要求面積最小值,只需確定
的最大值,由
結(jié)合目標函數(shù),易求;(2)設橢圓標準方程為
,點
在橢圓上,代入點得
①,利用弦長公式表示
,利用點到直線距離公式求高,進而表示
的面積,與①聯(lián)立,可確定
,進而確定橢圓的標準方程.
(1)設切點坐標為
.則切線斜率為
.切線方程為
.即
.此時,兩個坐標軸的正半軸于切線圍成的三角形面積
.由
知當且僅當
時,
有最大值.即
有最小值.因此點
的坐標為
.
(2)設
的標準方程為
.點
.由點
在
上知
.并由
得
.又
是方程的根,因此
,由
,
,得
.由點
到直線
的距離為
及
得
.解得
或
.因此
,
(舍)或
,
.從而所求
的方程為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右頂點分別是
、
,左、右焦點分別是
、
.若
,
,
成等比數(shù)列,求此橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知點A
,橢圓E:
的離心率為
;F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點
(I)求E的方程;
(II)設過點A的動直線
與E 相交于P,Q兩點。當
的面積最大時,求
的直線方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,
為橢圓在
軸正半軸上的焦點,
、
兩點在橢圓
上,且
,定點
.
(1)求證:當
時
;
(2)若當
時有
,求橢圓
的方程;
(3)在(2)的橢圓中,當
、
兩點在橢圓
上運動時,試判斷
是否有最大值,若存在,求出最大值,并求出這時
、
兩點所在直線方程,若不存在,給出理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓E:
+
=1(a>b>0)的上焦點是F
1,過點P(3,4)和F
1作直線PF
1交橢圓于A,B兩點,已知A(
,
).
(1)求橢圓E的方程;
(2)設點C是橢圓E上到直線PF
1距離最遠的點,求C點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
圓
的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線
過點P且離心率為
.
(1)求
的方程;
(2)橢圓
過點P且與
有相同的焦點,直線
過
的右焦點且與
交于A,B兩點,若以線段AB為直徑的圓心過點P,求
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
[2014·綿陽模擬]在平面直角坐標系xOy中,橢圓C:
+
=1的左、右焦點分別是F
1、F
2,P為橢圓C上的一點,且PF
1⊥PF
2,則△PF
1F
2的面積為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線C:
離心率是
,過點
,且右支上的弦
過右焦點
.
(1)求雙曲線C的方程;
(2)求弦
的中點
的軌跡E的方程;
(3)是否存在以
為直徑的圓過原點O?,若存在,求出直線
的斜率k 的值.若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
為橢圓
的兩個焦點,過
的直線交橢圓于兩點,
,
則
( )
查看答案和解析>>