【題目】已知橢圓:.
(1)曲線:與相交于,兩點(diǎn),為上異于,的點(diǎn),若直線的斜率為1,求直線的斜率;
(2)若的左焦點(diǎn)為,右頂點(diǎn)為,直線:.過的直線與相交于,(在第一象限)兩點(diǎn),與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請說明理由.
【答案】(1);(2)直線不存在,理由見解析
【解析】
(1)設(shè),,,利用點(diǎn)差法可得,從而求出;
(2)假設(shè)存在滿足題意,設(shè),,,由,,,可得①,設(shè):,令,得,故②,再聯(lián)立直線與橢圓方程,得到韋達(dá)定理,將之與②聯(lián)立求解,若有解,則直線存在,若無解,則直線不存在.
(1)由已知設(shè),,,
因?yàn)辄c(diǎn)均在橢圓上,
所以,,
兩式相減得,
又,且,
∴;
(2)設(shè),,,
則,
,
,
假設(shè)存在使得的面積等于的面積與的面積之和,
則,即①,
設(shè):,令,得,∴②,
把,將之代入,整理得,
∴③,
④,
②③聯(lián)立得,⑤,
把⑤代入④得,
化簡得,
由于此方程無解,故所求直線不存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:
(Ⅰ)(1)設(shè)所采集的40個連續(xù)正常運(yùn)行時間的中位數(shù),并將連續(xù)正常運(yùn)行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
試寫出,,,的值;
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時間有差異?
附:,
0.050> | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨(dú)立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元次;保障維護(hù)費(fèi)第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,,2,3,4.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四個同樣大小的球,,,兩兩相切,點(diǎn)是球上的動點(diǎn),則直線與直線所成角的正弦值的取值范圍為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標(biāo)作為劃分國家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機(jī)附贈玩具,,中的一個,每袋零食乙從玩具,中隨機(jī)附贈一個.記事件:一次性購買袋零食甲后集齊玩具,,;事件:一次性購買袋零食乙后集齊玩具,.
(1)求概率,及;
(2)已知,其中,為常數(shù),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且
(1)求數(shù)列通項(xiàng)公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是九江市2019年4月至2020年3月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r=0.83,則下列結(jié)論錯誤的是( )
A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)
B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10月
C.9﹣12月的月溫差相對于5﹣8月,波動性更大
D.每月最高氣溫與最低氣溫的平均值在前6個月逐月增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線,的普通方程;
(2)已知點(diǎn),若曲線,交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個國家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國家或地區(qū)直接宣布“封國”或“封城”,隨著國外部分活動進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:
企業(yè)成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企業(yè)成立年限 | 1 | 2 | 3 | 4 | 5 |
倒閉企業(yè)數(shù)量(萬家) | 5.28 | 4.72 | 3.58 | 2.70 | 2.15 |
倒閉企業(yè)所占比例 | 21.4% | 19.1% | 14.5% | 10.9% | 8.7% |
(1)由所給數(shù)據(jù)可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測年成立的企業(yè)中倒閉企業(yè)所占比例.
參考數(shù)據(jù):,,,,
相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com