設(shè)函數(shù).
(I)解不等式;
(II)求函數(shù)的最小值.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)先將函數(shù)寫(xiě)成分段函數(shù)的形式,根據(jù)分段函數(shù)的解析式作出函數(shù)的圖像,然后求出直線與函數(shù)圖像的交點(diǎn)坐標(biāo)為和,利用數(shù)形結(jié)合的思想可知的解集;(Ⅱ)找到函數(shù)圖像的最低點(diǎn),求出最低點(diǎn)的縱坐標(biāo)即可.
試題解析:(Ⅰ)令,則有,
則作出函數(shù)的圖像如下:
它與直線的交點(diǎn)為和.
所以的解集為:. 6分
(Ⅱ)由函數(shù)的圖像可知,
當(dāng)時(shí),函數(shù)取得最小值. 10分
考點(diǎn):1.分段函數(shù)的解析式及其圖像;2.絕對(duì)值不等式;3.數(shù)形結(jié)合思想
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)().
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
運(yùn)貨卡車(chē)以每小時(shí)千米的速度勻速行駛130千米(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車(chē)每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車(chē)總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時(shí),這次行車(chē)的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)滿足,且。
(1)求的解析式;
(2)當(dāng)時(shí),方程有解,求實(shí)數(shù)的取值范圍;
(3)設(shè),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)對(duì)任意a,b都有當(dāng)時(shí),.
(1)求證:在R上是增函數(shù). (2)若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況。在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù)。當(dāng)橋上的的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明;當(dāng)時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀點(diǎn)的車(chē)輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校課外興趣小組的學(xué)生為了給學(xué)校邊的一口被污染的池塘治污,他們通過(guò)實(shí)驗(yàn)后決定在池塘中投放一種能與水中的污染物質(zhì)發(fā)生化學(xué)反應(yīng)的藥劑.已知每投放個(gè)單位的藥劑,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中若多次投放,則某一時(shí)刻水中的藥劑濃度為各次投放的藥劑在相應(yīng)時(shí)刻所釋放的濃度之和.根據(jù)經(jīng)驗(yàn),當(dāng)水中藥劑的濃度不低于4(克/升)時(shí),它才能起到有效治污的作用.
(Ⅰ)若一次投放4個(gè)單位的藥劑,則有效治污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次投放2個(gè)單位的藥劑,6天后再投放個(gè)單位的藥劑,要使接下來(lái)的4天中能夠持續(xù)有效治污,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長(zhǎng)度不超過(guò)1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓:的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過(guò)點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com